
 

Using Hypersets to Represent Semistructured Data 

Piotr Kaminski* 
piotr@ideanest.com 

 
Abstract 

This paper presents a new metamodel based on partially ordered hypersets.  The metamodel is 
minimalist, its only primitives being atoms, potentially infinite hypersets and partial order.  The type 
system is very loose and supports concurrent extensional and intensional definition of types.  Every 
element of the metamodel can be directly referenced, thanks to a powerful automated reification facil-
ity.  These characteristics make the metamodel well adapted to integrating semistructured data.  The 
metamodel is also compared to a few other information representation formalisms to demonstrate that 
it subsumes them all and to exhibit some of their problems. 

1    Introduction 
A large number of information metamodels have been introduced over the last few decades.  
Each found its niche, according to the data representation needs and available computing 
power of that time, then was displaced by another, better adapted to the changing conditions.  
Complementary metamodels often coexisted, but data was rarely transferred between them 
and then only at great cost. 
Today, the relational model is the undisputed leader for highly structured data, occasionally 
supplemented by object-oriented variants to help lower the impedance mismatch with the 
comparatively recent object-oriented programming languages.  However, the advent of the 
web and the rise in popularity of document markup languages has caused a sharp increase in 
the quantity and importance of semi-structured data. 
The changing conditions have elicited the usual stream of new (and not-so-new) metamodel 
contenders.  While each has its technical or social advantages, in my opinion none is a super-
set of all the others that would allow natural integration of data from the various metamodels.  
In this paper, I present my entry into the fray:  a metamodel based on partially ordered hyper-
sets that is both simpler and more powerful than the competing formalisms. 
The rest of this paper is divided as follows.  Section 2 lays out the design goals and desired 
features of the metamodel.  They will motivate the design of the hyperset-based metamodel 
(exposed in section 3), and orient its comparison to other metamodels (section 4).  Section 5 
concludes this paper, summarizing the contributions of this metamodel and listing directions 
for further research. 

2    Goals and Features 
The primary goal for this metamodel is that it be sufficiently flexible to be able to represent 
any kind of semi-structured data that might be encountered on the semantic web.  It must be 
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able to integrate information from all kinds of sources with no loss of meaning, since it seems 
rather unlikely (and perhaps undesirable) that everyone will agree on a single metamodel for 
all data.  This means, among other things, that the metamodel cannot force a strict type sys-
tem, since this would prevent data integration from untyped metamodels. 
In order to be flexible, the metamodel should be as simple as possible.  A small number of 
primitive constructs and the ability to combine them in many ways give it the best chance to 
be able to adapt to any kind of metamodel we might run into.  For example, drawing an anal-
ogy to programming languages’ data models, there should be no distinction made between 
primitive values and objects (as in C++ and Java).  Rather, all information elements should be 
treated the same way so as to maximize flexibility (as in Smalltalk).  The usual tradeoff is a 
loss of efficiency, which I consider acceptable. 
Another feature critical to flexibility is the ability to reference anything in the model.  Once 
again, by analogy to programming languages, we need powerful reflection facilities such as 
Lisp’s ability to reference the program itself as a list, or Scheme’s continuations.  This leaves 
the metamodel open to manipulation from within the models themselves.  An important as-
pect of this feature is that the metamodel must be closed under queries:  the results of any 
query will “look” the same as any other part of the model, and can be referenced directly. 
Since the new metamodel is meant to be used to integrate data from the semantic web, it must 
deal with issues of trust.  At the very least, it must be easy to identify the provenance of each 
piece of information, and to filter out information that is not deemed trustworthy.  The previ-
ous two goals dictate that this should not be a special-purpose mechanism (simplicity) and 
that it can be achieved by referencing all the data obtained from a source (universal refer-
ences). 
Finally, it is worth mentioning that ease of serialization was not considered a goal.  If data 
needs to be exchanged, it can be exported into any of the multitude of other standard formats.  
Manual data manipulation will be done with the assistance of an application and not directly 
through a text file.  Thus, no serialization format (XML or otherwise) is specified in this pa-
per. 

3    The Metamodel 
This section introduces a data metamodel that satisfies the goals listed above.  Much of it was 
inspired by the principles and ideas put forth in [5]. 

3.1    Foundations 

The metamodel is composed of just two primitive elements:  atoms and hypersets.  Atoms are 
used to represent any piece of information that we cannot or do not wish to further decom-
pose.  Examples include values such as Boolean literals, numbers, characters, dates, etc.  We 
also use atoms to stand for things in the world outside our system, such as books, people, web 
sites, files, etc.  The only difference between the two kinds of atoms is that some may stand 
for things that have a representation in the programming language we happen to be using, 
while others may not. 
The other kind of primitive element is the hyperset.  A hyperset is a set, and can contain any 
mixture of atoms and hypersets.  Hypersets differ from classical sets in that any given set is 
allowed to contain itself.  This is achieved by replacing the Foundation Axiom with the Anti-
Foundation Axiom [2], so hypersets are often called non-well-founded sets. 
Figure 1 gives an example of a small model built using atoms and sets.  Figure 1a employs a 
simple nesting notation.  Sets are drawn as large ellipses, atoms as filled dots, and member-



ship is indicated through containment.  The atoms’ labels merely indicate the value to which 
each atom corresponds; they are not part of the model.  Instead, each atom that has a represen-
tation in the underlying system would be mapped to it in an implementation-dependent way. 
Figure 1b shows the same model as figure 1a, but uses a custom-made direct graph notation.  
Sets are drawn as empty dots and atoms as filled dots.  Edges point from sets to their mem-
bers. 
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You can tell that both sets in figure 1 are classical because the graph in 1b is acyclic.  Figure 2 
shows an example of a recursive hyperset that generates an infinite expansion.  As it is not 
practical to represent such models using nested diagrams, the rest of this paper will only use 
the directed graph representation.  Section 4.2 explains why this is only a representation and 
how the metamodel differs from a traditional directed graph. 
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With only two kinds of primitive elements, the metamodel is very simple.  We could pare it 
down further by defining atoms to be empty hypersets.  There is no benefit in such a redefini-
tion, though, since it doesn’t make the metamodel any more expressive and it may be confus-
ing to model atomic values as empty sets. 

3.2    Types 
While the metamodel does not enforce strict typing, it is useful to look at how types might be 
represented.  The most natural approach is to consider a type as the set of its instances.  The 
instances can be added to the type set manually, which would directly correspond to an exten-
sional definition of the type.  The contents of the type set can also be the result of a query, 
perhaps based on some properties of the type set, corresponding to an intensional definition.  
The definition could even be mixed, such as for a concrete supertype that automatically con-
tains all the instances of its subtypes, but may also have explicit instances of its own. 
Figure 3 shows an example of types.  The set labels are there to make the graph readable and 
are not part of the model itself.  Section 3.3 explains how to name elements. 

true false

Booleans

Types

 
Figure 3 



The Booleans type consists of two members, true and false.  Since it is a type, it is an instance 
of the Types type, and therefore a member of that set.  However, since Types is a type also, 
the set must be a member of itself to keep the model consistent, providing one reason why 
non-well-founded sets are needed. 
This approach to typing, if employed, gives the metamodel a non-fixed layer architecture.  
The advantage is that types and instances are all part of the same model and can be treated 
uniformly, which is very important for semistructured data [1].  The disadvantages claimed in 
[9] include difficulties with formalizing the metamodel’s semantics and the need to use hy-
persets, which can lead to Russell’s paradox.  However, those objections are irrelevant in 
view of our stated goals:  since there are other metamodels that use a non-fixed layer architec-
ture (for example RDF [7]), we must support it too to be able to integrate them. 

3.3    Ordering and Duplicates 
While the metamodel as presented above is complete, the models are meant for human con-
sumption, and people often like to have data elements consistently ordered.  It is possible to 
encode order directly with sets, so adding it as a primitive will not increase the expressive 
power of the metamodel but it will make ordering elements far more convenient and efficient. 
The most common way to order elements is to impose a total order on the set, making a chain.  
This is not enough, though.  When integrating data obtained from different sources, it is likely 
that we will have to merge ordered sets together.  Since we expect the data to be semistruc-
tured, it is possible that the sets’ members will not be comparable to each other.  We must 
thus include partially ordered sets in our metamodel to satisfy the goal of smooth integration. 
It is also useful to relax the set restriction and allow duplicates into the collections.  In this 
way we obtain lists / n-tuples (when totally ordered) and bags (when unordered).  The former 
are especially useful, since pairs can be interpreted as directed arcs and used to attach proper-
ties to elements. 
Figure 4 demonstrates the use of pairs to give names to model elements.  As usual, the labels 
are only informative and not part of the model.  Order within n-tuples is indicated using tick 
marks, so the edge to the first member is adorned with a ’, to the second member with ’’, etc. 
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Figure 4 

Figure 4 extends figure 3 by naming the type sets.  The hypersets b and f are carried over.  
The pairs a and e associate a string atom to each of the two original type sets.  By convention, 
the element being named is the first member, and the name is the second member.  To indi-
cate that these pairs are name properties we make them instances of the type set d, the set of 
name relators.  Of course, this set has a name as well, indicated by the pair c that names the 
type set of which it’s an instance.  Finally, the set d is a type, which is indicated by its mem-
bership in b to avoid further complicating the sample model. 
Table 1 summarizes the various kinds of collections in the metamodel, organized along the 
axes of ordering and duplication and stripped of the “hyper” prefix.  We’ll use the term hy-
pernest (or nest for short) when referring to a collection that’s part of a model but whose ex-
act kind is irrelevant. 



 Unordered Partially Ordered Totally Ordered 
No Duplicates set poset chain 
Duplicates Allowed bag — list / n-tuple 

Table 1 

3.4    Infinite Sets 
There is still something missing from figure 4:  the string atoms are not members of a type 
set.  What would the Strings type set look like?  According to our definition in section 3.2, it 
should contain all instances of the type—that is, all possible strings.  Since the set of all pos-
sible strings is infinite (disregarding implementation limitations), it follows that the meta-
model must allow for nests with an infinite number of members.  Other examples of types 
with infinite extent are numbers, moments in time, and positions in space. 
Notice that many of the infinite sets are thick, or even uncountable.  They have a natural total 
ordering of their members, yet there exists no sequence that would enumerate them in the 
correct order.  These infinite ordered sets require that ordering be a primitive feature that can-
not be replaced by sequence index properties or linked lists, the only techniques considered in 
survey [8]. 

3.5    Membership Reification 
Reification is the action of making some implicit object “real” within the model, and thus 
gaining the ability to refer to it.  Most commonly used is reification of associations (state-
ments), for example to make further statements about their origin.  The metamodel naturally 
caters for this common case since associations are just nests (for example, the pairs in figure 
4), and can already be referenced directly in other nests. 
Reification of links is more rarely used.  The intention is to reify the component objects of an 
association to make statements about them.  In this metamodel, this is equivalent to reifying 
the membership of each element.  For n-tuples, you can think of it as reifying the endpoints of 
the association arc. 
The mechanism is as follows.  Each model that requires reification includes a special mem-
bership nest.  The contents of this nest are determined automatically by the system.  It con-
tains one container-member pair nest for each such pair present in the model.  For bags and 
lists, each duplicate member gets its own reified membership pair.  The membership nest is 
partially ordered:  the pairs for each container match the order of its members, and pairs cor-
responding to different containers are unrelated. 
Note that the membership nest is defined over the whole model, in which it is included.  Con-
sequently, if a model contains at least one non-empty nest, the membership nest will contain 
infinitely many membership reification pairs.  The first pair reifies a member of the non-
empty nest, which introduces a nest with two more members into the model.  These members 
are reified, in turn, and produce two more pairs, etc. ad infinitum. 
Of course, any implementation of this mechanism would have to use lazy evaluation to avoid 
infinite descent.  Besides, link reification is rarely needed, and almost never past the first 
level.  However, the metamodel must support arbitrary reification to be consistent. 



4    Comparisons 
This section draws some quick comparisons between the partially ordered hypernest meta-
model introduced in this paper and a small group of other metamodels.  The competitors were 
selected based on their ubiquity, expressive power, mind share, and possession of features 
similar to the hypernest metamodel. 

4.1    Relational Databases 
Although relational databases are not in the running in the race to model semistructured data, 
their popularity ensures that any metamodel aspiring to integrate data from every source will 
have to subsume the relational model.  There is a straightforward mapping from relational 
tables to hypernests.  Each table is viewed as a set, and each row as an n-tuple.  Table defini-
tions can be represented by properties attached directly to the table sets.  With some extra 
information, foreign keys could be elided and mapped to associations between the appropriate 
rows.  In any case, there is clearly no problem in assimilating the simple relational structure 
into the hypernest metamodel. 
It is less clear how well SQL could be mapped to a hypernest query language; this is an area 
for future research. 

4.2    Labeled Directed Graphs 
Labeled directed graphs are the most popular way of modeling semistructured data.  Some 
systems that use them are SHriMP [12] (Simple Hierarchical Multi-Perspective views), 
GOOD [6] (Graph-Oriented Object Database), OEM [10][1] (Object Exchange Model) and 
RDF [7] (Resource Description Framework).  Although there are some variations in their ap-
plication of this approach, this section will tackle the comparison at a very high level and list 
problems that are nearly universal. 
All labeled directed graphs can be trivially transformed into a hypernest model.  Each vertex 
is mapped to an atom; if it is labeled, the atom is given a name using the technique shown in 
section 3.3.  Each edge is mapped to a nest.  If the edge is directed, it’s mapped to an n-tuple, 
and if it happens to be undirected, it’s mapped to a bag.  Any label can be associated with the 
edge nest using the standard technique, or it could be placed into an extra element of the n-
tuple. 
It is also true that any kind of information model can be represented using a directed graph, 
but a number of problems make them inappropriate for integrating semistructured data.  First, 
they do not support universal references:  it is impossible to refer to edges within the graph.  
If we want to reify an association (figure 5), or construct an n-ary association for n>2 (figure 
6), we must create a new vertex to represent it. 

A Blikes A Bsubject likes objectreified

X

says

 

Figure 5 



A
B

subject
likes-

together
object

C
object

 
Figure 6 

Similarly, if we want to state more than just the name of the links in a reified association, we 
have to reify it once again, so that the links become vertices.  Not only is this annoying, but 
unless the whole model is at the same reification level we won’t be able to write uniform que-
ries across it.  In other words, if we reify one association, we must reify them all, and rewrite 
all our queries to match the new structure.  If we try to avoid the problem by keeping the 
original edges that were reified in the model, we would need to enforce consistent updates at 
all reification levels.  The hypernest metamodel avoids these issues by ensuring that both as-
sociations and links to any depth can be referenced directly, without any changes to the 
model. 
Another problem with labeled graphs is that the labels are an unnecessary primitive feature 
and cannot even be referenced.  They are not first-class citizens of the model.  When edge 
labels are used to indicate type, as is often done, any information about the type must be asso-
ciated to the label in an ad-hoc manner, often by lexical matching on the label string.  Labels 
also complicate query languages and often reduce their orthogonality. 
Finally, most graph models have no intrinsic concept of edge order and must achieve this ef-
fect through indexing or linked lists.  (TGraphs [4] are an interesting exception.) 

4.3    Hypernode Model 
The Hypernode Model is a nested-graph model employed by Hyperlog, as described in [11].  
Each hypernode contains a non-well-founded set of hypernodes, and a separate set of directed 
(but unlabeled) edges.  It is quite powerful and has a very well developed formal query and 
programming language.  Programs and the type system are incorporated into the graph.  It is 
the metamodel most similar to the one proposed in this paper. 
Some differences with hypernests make it inappropriate for semistructured data integration, 
though.  It is strongly typed and has no intrinsic concept of order.  Worst of all, the edges 
cannot be referenced. 

4.4    XML 

XML [3] is the markup language currently sweeping the web.  Its basic data model is an or-
dered tree with attributed nodes, though some specific vocabularies have extended these se-
mantics.  Due to its simplicity and the wide availability of generic parsers, it has become the 
language of choice for data exchange, and much semistructured data can be found in some 
dialect of it. 
XML imports into hypernests very easily.  Each element is a chain of other elements and 
string atoms.  Attributes are attached to an element using, for example, 3-tuples.  Specific 
vocabularies can include additional rules for creating cross-links through IDREF and includ-
ing DTD, XSchema or RELAX-NG typing information. 
Most any metamodel can integrate XML.  The main advantage of hypernests is that the ele-
ment chains are naturally ordered, which is important in some XML vocabularies. 



5    Conclusions 
By holding true to the twin design principles of extreme simplicity and universal references 
the partially ordered hypernests model presented in this paper achieves both elegance and 
expressive power.  Some of its novel or rare features are: 

• every model element can be directly referenced; 
• implicit elements are automatically reified without upsetting the model structure; 
• naturally supports nesting structures; 
• order is intrinsic to the model and does not have to be emulated; 
• allows infinite collections. 

These features, combined with a loose type system, make for a very flexible metamodel that 
is perfectly suited to semistructured data integration.  Further research work currently under 
way includes specifying a formal query language, producing formal bijective mappings to 
other metamodels, and implementing a model back-end as well as a reconfigurable visualiza-
tion system. 
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