
Applying Multi-dimensional Separation
of Concerns to Software Visualization

Piotr Kaminski

Department of Computer Science, University of Victoria
PO Box 3055, STN CSC, Victoria, BC, Canada V8W 3P6

pkaminsk@csc.uvic.ca

Abstract
Software visualization tools have so far not
taken advantage of the recent advances in
multi-dimensional separation of concerns.
To integrate the two, it is necessary to define
a representation for concerns and concern
spaces that fits these tools and can be im-
plemented as a graph. If successful, this will
enrich the structure of system models, allow-
ing new kinds of visualizations and ulti-
mately benefiting both communities.

1 Introduction
In recent years, research related to multi-
dimensional separation of concerns has
grown by leaps and bounds. At the same
time, the software visualization community
seems to have remained largely unaware of
this progress and lags behind integrating the
new concepts into its program understanding
tools. Although such an integration is not a
trivial endeavour, I contend that it would
have significant benefits for both communi-
ties.

In this position paper, I first provide a quick
overview of both the multi-dimensional
separation of concerns (2.1) and software
visualization (2.2) fields, concentrating on
generally accepted ideas and approaches. I
then expose some of the issues related to
modeling concerns (3.1) and concern spaces
(3.2) within program understanding tools,
and propose some solutions. After touching
on a possible implementation model (3.3)

and some of the exciting research opportuni-
ties presented by visualization of software
units organized into multi-dimensional
structures (3.4), I conclude with my opinion
on the expected benefits of this work (4).

2 Background
This section provides short overviews of
both fields. If you are familiar with either
one, you can safely skip the related subsec-
tion.

2.1 Multi-Dimensional Separation of
Concerns

Extolling the advantages of separation of
concerns has become somewhat of a bro-
mide in the field of software engineering,
though this doesn’t make it any less true.
However, the rewards promised by propo-
nents of this approach have for the most part
failed to materialize. Program comprehen-
sibility, reusability and evolvability remain
poor.

Some contend [8] that this is because current
programming languages are limited to sepa-
rating concerns in only one or two [3][4]
dimensions at a time—the “tyranny of the
dominant decomposition.” For example,
object-oriented programming only allows
for concern decomposition and modulariza-
tion by separating code between appropri-
ately encapsulated classes. Not all features
can be conveniently encapsulated in a class,
though, resulting in scattering of concerns
among classes (higher coupling), and tan-

Position paper for the Workshop on Advanced Separation of Concerns, ICSE 2001 1

gling of concerns within a single class (low-
ered cohesion).

The proposed solution is to provide mecha-
nisms for separating concerns within multi-
ple concern spaces simultaneously. Each
concern space would group concerns of the
same kind, for example classes, function
points, aspects, roles, versions, etc. Work
products (including especially the code, but
also other artifacts) would then be decom-
posed into atomic units that would be cate-
gorized within each concern space. If nec-
essary, means to recompose the original
artifacts from the separated units should also
be provided.

There is, as yet, no widespread agreement
on the structure of a concern space and the
ways to recompose the various artifacts, es-
pecially when the concern spaces interact in
complex ways.

2.2 Software Visualization
Software visualization is concerned with
producing visual representations of both
static artifacts and their dynamic behaviour.
While some visualization tools have specific
objectives, such as optimizing running time
or locating memory leaks, most simply aim
to improve the user’s overall understanding
of a system.

A popular approach in this last category is
exemplified by the Rigi tool [9]. It trans-
forms all artifacts into a graph, where each
vertex represents a unit and each edge some
relationship between two units. The graph is
represented on-screen by a stylized node-
and-arc diagram, and various layout algo-
rithms can be applied to clarify the structure
of the system being examined.

The granularity of the information repre-
sented in the graph varies with the parser
employed to extract it. Many tools consider
functions and variables to be atomic units,
and function calls and variable access to be
atomic relationships. Finer granularity is

possible if the tool’s backing store can scale
appropriately.

Of course, being able to only observe the
atomic units and relationships will result in a
“can’t see the forest for the trees” problem
for all but the smallest systems. To counter-
act this, all tools have the ability to regroup
atomic units into compound ones, and to ex-
press higher-level relationships between
them. Some of this recomposition is done
automatically during parsing (according to
the original artifact’s dominating decompo-
sition), and further modularization can be
performed manually by the user within the
environment. However, in current tools, all
aggregation must take place along one axis:
the standard “subsystem” dimension defined
in the classical separation of concerns
method.

3 Modeling Concerns
Being able to aggregate units independently
along multiple axes should help the user bet-
ter organize the information available about
a system. Naturally, there are challenges to
be faced in the construction of such a tool.

3.1 Concerns
How should the tool represent concerns? In
current tools, synthetic (user-created) mod-
ules are simply new compound units within
the integrated system model. This seems
like a good lead to follow, since it allows
concerns to be treated uniformly with other
units, for visualization or for further struc-
turing.

Both existing parsed units and new synthetic
units should be valid concern candidates.
This is necessary because some concerns
might already by present in the system
model (e.g. classes), and only need to be as-
sociated with the right “content” units.
Forcing the user to create synthetic concerns
in this case would result in one unit having
two representations within the system.

Position paper for the Workshop on Advanced Separation of Concerns, ICSE 2001 2

The tool should also support numeric con-
cerns, both discrete (integers) and continu-
ous (real numbers, time), whose usefulness
has been demonstrated in [6].

3.2 Concern Spaces
How should the tool represent concern
spaces? A concern space is akin to a
mathematical dimension. It consists of a
domain of units (a subset of all the units in
the system) and a range of concerns and the
mapping of the units to those concerns.

In [7], a concern is defined as a predicate
over units that indicates whether or not a
unit pertains to that concern. According to
this definition, a unit in the system model
becomes a concern if and only if it is in-
cluded in the range of a concern space. A
single unit represents a separate concern for
each concern space it’s a member of. (This
makes sense if you think of moments in time
as concerns. Depending on the concern
space, a given moment in time may actually
express a different concern.)

What kind of structure does a concern space
have? We might want to limit the mapping
to be injective (each unit maps to at most
one concern), or perhaps even surjective
(each concern is “covered” by at least one
unit). We might also want an implicit “null”
concern in each space, to which every unit
in the system not present in the space’s do-
main is automatically mapped. There are
many possible tradeoffs between a strict
structure that could facilitate composition at
a later time, and flexibility, which increases
the user’s control over the model’s organiza-
tion.

One final note of interest is that mathemati-
cal dimensions are rarely unstructured sets.
As a matter of fact, most are totally ordered
sets. It might be useful to structure the con-
cern range of a concern space in a similar
manner. For example, a time-related con-
cern space would benefit from having its

concerns ordered chronologically [6]. A
concern space of directories or classes, on
the other hand, has an inherently hierarchi-
cal structure, as proposed in [5].

Allowing the user to impose a partial order
on the collection of concerns can support all
of these various structures. This scheme ac-
counts for unordered and totally ordered sets,
trees, and lattices, such as the one formed by
Java interfaces.

3.3 Hypergraph Implementation
The concern space model proposed above
might appear difficult to represent within a
directed graph. This is indeed true, but a
slightly more general graph model, a par-
tially ordered hypergraph [1], can easily rep-
resent the required constructs.

In a hypergraph, an edge can connect any
number of vertices. This allows for a natu-
ral model of collections, such as the range of
concerns in a concern space. If we further
consider each edge as a vertex, then rela-
tions such as the unit→concern mapping can
be represented as a collection edge (set) of
cardinality 2 ordered edges (mapping pairs).

This should be sufficient to convince you
that the concern space structure I presented
above is practical. For more information on
a tool that implements these ideas, visit
http://www.csr.uvic.ca/~pkaminsk/braque/.

3.4 Visualization of Concerns
Multi-dimensional separation of concerns
greatly enriches the structure of the system
under investigation. Effectively visualizing
this structure is a challenge just beginning to
be met.

One can imagine many static views that
demonstrate the cross-cutting of various
concerns through the system, such as in [2].
The three-dimensional views suggested in [5]
could also prove interesting, and there are
undoubtedly many other possibilities for ef-

Position paper for the Workshop on Advanced Separation of Concerns, ICSE 2001 3

Position paper for the Workshop on Advanced Separation of Concerns, ICSE 2001 4

fectively communicating the complex or-
ganization of a system to the user.

Recent tools have also started using anima-
tion [10] to convey the system’s structure to
the user more dynamically. Animating a
transition between the visualization of two
concern spaces could be an effective means
of showing the differing organizations of
units within the two spaces to the user.

4 Conclusions
In this paper, I have suggested a way to ap-
ply multi-dimensional separation of con-
cerns to software visualization. Such a mar-
riage would have clear advantages for
software visualization: a richer organization
structure imposed on the system model
would increase a user’s understanding of the
system. This could allow maintenance pro-
grammers to better target and scope their
work, and help evolve a system over time.
Basically, it should bring all the benefits of
true separation of concerns to existing soft-
ware systems.

The multi-dimensional separation of con-
cerns community also stands to gain from
this arrangement. Software visualizations
tools usually have powerful structural query
facilities in addition to the graphical rendi-
tions they offer. Both could be used to great
advantage when trying to reengineer exist-
ing software into a multi-dimensional shape.
Mapping code units to concerns by hand is a
time-consuming and difficult endeavour, as
attested to by [7]. This activity could be as-
sisted by and even partially automated with
appropriate tool support. This next-
generation tool would also be able to model
software that has an explicit multi-
dimensional structure, such as code written
in AspectJ or HyperJ.

Although we’ll need to keep a close eye on
the additional complexity that multi-
dimensional separation of concerns will in-
troduce into software visualization tools, I

believe that the benefits outweigh any dis-
advantages, and there is a lot exciting re-
search waiting to be done in this area.

References
[1] C. Berge, “Graphs and Hypergraphs.” North-
Holland, Amsterdam, 1976.

[2] W. G. Griswold, Y. Kato, J. J. Yuan, “Aspect
Browser: Tool Support for Managing Dispersed As-
pects.” Workshop on Multi-dimensional Separation
of Concerns in Object-Oriented Systems, OOPSLA
’99, 1999

[3] W. Harrison, H. Ossher, “Subject-Oriented Pro-
gramming (a critique of pure objects).” In Proc.
OOPSLA ’93.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J. Loingtier, J. Irwin, “Aspect-
Oriented Programming.” In Proc. ECOOP ’97.

[5] D. Kimelman, “Multidimensional Tree-
Structured Spaces for Separation of Concerns in
Software Development Environments.” Workshop on
Multi-dimensional Separation of Concerns in Object-
Oriented Systems, OOPSLA ’99, 1999

[6] V. Kruskal, “A Blast from the Past: Using P-
EDIT for Multidimensional Editing.” Workshop on
Multi-Dimensional Separation of Concerns in Soft-
ware Engineering, ICSE 2000, 2000.

[7] A. Lai, G. C. Murphy, “The Structure of Fea-
tures in Java Code: An Exploratory Investigation.”
Workshop on Multi-dimensional Separation of Con-
cerns in Object-Oriented Systems, OOPSLA ’99,
1999

[8] H. Ossher, P. Tarr. “Multi-dimensional separa-
tion of concerns in hyperspace.” Technical Report
RC 21452(96717)16APR99, IBM T.J. Watson Re-
search Center, 1999.

[9] Rigi home page, http://rigi.csc.uvic.ca/

[10] SHriMP home page,
http://www.csr.uvic.ca/~mstorey/research/shrimp/

	Introduction
	Background
	Multi-Dimensional Separation of Concerns
	Software Visualization

	Modeling Concerns
	Concerns
	Concern Spaces
	Hypergraph Implementation
	Visualization of Concerns

	Conclusions

