
 

 
 
 

VViiddeeoo  BBeenncchh  
 

Final Report 
 
 
 
 
 

SEng 480a / CSc 586a 
 
 
 
 
 

 James Chisan 
 Jeff Cockburn 
 Reid Garner 
 Azarin Jazayeri 
 Piotr Kaminski 
 Jesse Wesson 

 
 
 
 
 
 
 
 

University of Victoria 
April 11, 2003 

 



 ii

 Table of Contents 
Table of Contents ......................................................................................................................... ii 

List of Figures .............................................................................................................................. iv 

1. Introduction .............................................................................................................................1 
1.1. Target Audience...............................................................................................................1 
1.2. Scope Restrictions ............................................................................................................1 
1.3. Outline ...............................................................................................................................2 

2. Background ..............................................................................................................................2 
2.1. Commercial Video Editing Systems..............................................................................2 
2.2. Video Editing Research...................................................................................................4 
2.3. Gesture Research..............................................................................................................6 
2.4. Scene Segmentation Research ........................................................................................7 

3. Conceptual Design..................................................................................................................8 
3.1. Benchtop............................................................................................................................8 
3.2. Play Toggle .....................................................................................................................10 
3.3. Spread and Fold .............................................................................................................11 
3.4. Move ................................................................................................................................12 
3.5. Split, Splice and Jog .......................................................................................................13 
3.6. Grow and Shrink............................................................................................................16 
3.7. Tools: Trash, Clone and Squish....................................................................................17 

4. Implementation .....................................................................................................................18 
4.1. Rendering........................................................................................................................18 

4.1.1. Canvas Drawing.....................................................................................................18 
4.1.2. Video Framework ..................................................................................................19 

4.2. Gesture Recognition ......................................................................................................20 
4.2.1. Multipoint Detection .............................................................................................20 
4.2.2. Hardware Issues.....................................................................................................22 
4.2.3. Jog and Split Gestures ...........................................................................................23 
4.2.4. Other Gestures........................................................................................................24 

4.3. Scene Detection ..............................................................................................................24 
4.3.1. Current Implementation .......................................................................................25 
4.3.2. Segmentation and Clustering...............................................................................25 
4.3.3. Algorithmic Speculations......................................................................................27 

5. Evaluation ..............................................................................................................................28 
5.1. Sample .............................................................................................................................28 
5.2. Method.............................................................................................................................28 
5.3. Questionnaire Results ...................................................................................................29 
5.4. Observation Results.......................................................................................................29 
5.5. Suggestions .....................................................................................................................31 



 iii

6. Conclusion..............................................................................................................................32 
6.1. Achievements .................................................................................................................32 
6.2. Future Work....................................................................................................................32 

References ....................................................................................................................................34 

A. Statement of Contributions..................................................................................................35 

B. Evaluation Questionnaire ....................................................................................................37 

C. User Manual...........................................................................................................................39 
  



 iv

List of Figures 
Figure 1. A typical iMovie window........................................................................................... 3 
Figure 2. A detailed timeline in iMovie .................................................................................... 3 
Figure 3. Main user interface of Silver 2 ................................................................................... 4 
Figure 4. Silver 2 lens................................................................................................................... 5 
Figure 5. A Steenbeck six-plate flatbed editor ......................................................................... 8 
Figure 6. Benchtop with legend ................................................................................................. 9 
Figure 7. Toggling a cel ............................................................................................................. 10 
Figure 8. Spreading a strip........................................................................................................ 11 
Figure 9. Folding a strip ............................................................................................................ 12 
Figure 10. Moving a strip.......................................................................................................... 13 
Figure 11. Splitting a strip......................................................................................................... 14 
Figure 12. Splicing two strips ................................................................................................... 14 
Figure 13. Jogging through a cel .............................................................................................. 15 
Figure 14. Splitting a strip mid-cel .......................................................................................... 15 
Figure 15. Growing a cel ........................................................................................................... 16 
Figure 16. Shrinking a cel.......................................................................................................... 17 
Figure 17. Tool palette ............................................................................................................... 17 
Figure 18. DiamondTouch sensor data ambiguity................................................................ 21 
Figure 19. Axis crossover ambiguity....................................................................................... 22 
 



 1

1. Introduction 
The Video Bench project aims to explore the design space of collaborative video editing 

through direct gestural manipulation.  To achieve this goal, we designed and imple-

mented a prototype video editing system that takes advantage of the features of the 

DiamondTouch device. 

1.1. Target Audience 
The target audience for our user interface (and thus our prototype) is the casual user 

who requires only basic editing functionality and prizes ease of use and convenience 

over fancy features.  Furthermore, we expect our users to do the editing collaboratively, 

in small groups of 2 to 4 people. 

Sample users include parents editing home video footage (perhaps with the assistance 

of children), researchers editing user study records, and perhaps even film professionals 

collaboratively roughing out the structure of a scene or reviewing dailies.  The specific 

operations that we allow our users to perform are further detailed in Chapter 3. 

1.2. Scope Restrictions 
The prototype’s only purpose was to allow us to experiment with and evaluate our 

proposed video manipulation techniques, so many traditional concerns were outside 

the scope of this project.  The system’s performance was important only insofar as it 

qualitatively affected the nature of the users’ interactions with the system.  While some 

degree of responsiveness is necessary to maintain the illusion of direct manipulation, 

the system did not need to scale to higher workloads.  In the same vein, the system did 

not need to be able to handle high-resolution or lossless video formats; when testing, we 

used low-resolution videos that could be decoded efficiently. 

In consideration of the system’s target audience, we chose not to support advanced 

video editing functionality such as separate audio tracks, special effects, or colour ad-

justment.  While undoubtedly useful, such advanced functions are not necessary to per-

form basic video editing.  It will be interesting to investigate whether these more ab-

http://www.merl.com/projects/DiamondTouch/


 2

stract functions are amenable to direct manipulation once we’ve proven that our basic 

approach is sound (see Section 6.2). 

1.3. Outline 
The rest of this report is structured as follows.  Chapter 2 provides background infor-

mation on video editing systems and related research topics.  Chapter 3 introduces the 

fundamental concepts of the Video Bench and illustrates the primitive operations made 

available to the users.  Chapter 4 discusses implementation issues, and Chapter 5 de-

scribes the results of an informal system evaluation.  Chapter 6 concludes with a list of 

achievements and ideas for future work. 

2. Background 
Film and video editing is hardly a new art.  Without delving overmuch into history, this 

section describes the operation of a handful of industrial video editing systems, and 

presents some of the research in this area and other relevant fields. 

2.1. Commercial Video Editing Systems 
Nonlinear video editing systems have been available for some time.  Originally consist-

ing of turnkey solutions, newer systems can be run on a variety of workstations.  With 

the emergence of digital camcorders, consumer applications have also become available.  

One of the major players in the professional space is Avid and their software package 

Media Composer.  It is able to handle multiple media sources from traditional film to 

DV and output to a variety of formats including NTSC, High Definition TV, and others.  

Apple has also recently introduced two applications into this space, Final Cut Pro and 

iMovie.  Final Cut Pro is a professional system in the vein of Avid’s Composer but does 

not rely on proprietary hardware for support.  iMovie (see Figure 1), on the other hand, 

is geared towards the home user.  This application only supports DV video and does 

not offer all the features of the first two but is still a powerful tool for creating rich video.  

http://www.avid.com/index_fl.asp
http://www.avid.com/products/composer/
http://www.apple.com/
http://www.apple.com/finalcutpro/
http://www.apple.com/imovie/


 3

 

Figure 1. A typical iMovie window 

All of these packages rely on the same metaphors and have similar user interfaces.  

There are two main objects represented, the film being created and the clips that are 

used to create it.  These clips are usual presented in a bin of some sort allowing for easy 

retrieval and subsequent inclusion in the film.  A preview window is supplied to review 

the clips and film, while the higher end packages provide multiple windows and allow 

for real-time screening of changes.  Finally, the editing of the film uses a timeline (see 

) that provides access to the individual frames.  This is where the fine-grained 

editing occurs; transitions can be inserted and effects applied to the specific segments of 

the film.  The timeline can also be zoomed, but doing so normally loses the context. 

Figure 2

Figure 2. A detailed timeline in iMovie 

 



 4

Very few commercial systems support direct manipulation or gestural editing.  Quantel, 

a provider of professional editing stations, provides some support for gestural editing 

in their top-of-the-line systems.  The workstations are equipped with a graphics tablet, 

and the user can use the pen to control some features of the application—details are 

hard to come by.  However, this cannot really be considered direct manipulation, since 

the user interface (apparently) still employs the traditional timeline, and the input tablet 

is separate from the display. 

The Wacom Cintiq tablet and the recently introduced Tablet PCs address this last objec-

tion by combining the screen with the input surface.  The Cintiq literature makes allu-

sions to film editing, but seems to recommend the use of Final Cut Pro.  It is unclear 

what advantage, if any, is derived from having direct input in a user interface designed 

to be operated with a mouse. 

2.2. Video Editing Research 
There seems to have been relatively little academic research into video editing systems.  

At the moment, the most prominent effort is the Silver project (see Figure 3).  [LMC+] 

 

Figure 3. Main user interface of Silver 2 

http://www.quantel.com/
http://www.quantel.com/domisphere/infopool.nsf/html/E9660C9EE19FB2A180256C330040AE4B
http://www.wacom.com/index2.cfm
http://www.wacom.com/lcdtablets/index.cfm
http://www.microsoft.com/windowsxp/tabletpc/
http://www-2.cs.cmu.edu/~silver/


 5

The main thrust of the project seems to be to take the traditional timeline paradigm and 

augment it with extra information and context.  The application principally use lenses 

and semantic zooming (focus + context) to achieve this goal (see Figure 4), and if avail-

able also displays a transcript along the timeline.  While these techniques may make the 

visualization more effective (the results seem inconclusive), the project does not appear 

to innovate as far as the actual editing operations are concerned. 

 

Figure 4. Silver 2 lens 

Some older research has investigated the issue of video editing through direct manipu-

lation more closely.  Most projects seem to focus on the idea that, due to the large 

amount of data contained in videos, direct manipulation is impractical without system 

assistance.  IMPACT [UMY91] aims to automate the process of separating clips from a 

video through automatic scene and key frame detection.  It also uses object motion ana-

lysis to provide an abstract visual “description” of a cut.  The resulting, hopefully mean-

ingful segments can then be composed by the user through drag and drop operations.  

Hitchcock [GBC+00] takes this approach to the extreme, by having the system deter-

mine which cuts are good and how they should be composed given only a target video 

duration.  The user can affect the decision process, but does not perform any video edit-

ing in the traditional sense.  VideoScheme [MGM93] takes a programmer’s approach to 

resolving the automation issue, by integrating the video editor with a Scheme scripting 

system, but this approach is irrelevant considering our target audience. 



 6

Finally, the video mosaic system [MP94] is an augmented reality system that associates 

video clips with a hand-drawn storyboard.  The storyboard is drawn on a piece of paper 

and lies on a desk, while video is displayed either besides it or directly on top of it.  

Manipulation seems to be applied exclusively to the storyboard; the video display is 

just for viewing. 

In summary, while most aspects of our proposed Video Bench system have been ex-

perimented with before, nobody has yet attempted to bring them all together in the 

fashion described below. 

2.3. Gesture Research 
In the mid 1980’s there was some research that looked at the technical and practical is-

sues of direct manipulation input.  [KB91][Bux92]  In particular, much of the work we 

have identified so far concentrates on recognition of simple gestures made by a single 

point input device (such as a mouse or pen).  However, some research has sought to ex-

plore multipoint input on a horizontal surface.  In fact, Lee [LBS85] describes a device 

that is more sophisticated than the DT in that it has a complete matrix of point sensors 

across the surface of the board, rather than the DT’s cruder horizontal and vertical sen-

sor arrays (see Section 4.2.1).  The complete matrix allows the system to accurately de-

termine where the user is interacting with the board, even with multiple contact points.  

Presumably, the DT made design tradeoffs in order to keep production costs reasonable, 

and it does offer the added feature of being able to distinguish between multiple users. 

There is also some more recent research that concerns itself with the problem of hand-

writing recognition [Rub91].  Parts of this work related to stroke classification may be 

relevant for some of the gestures we are planning to support.  For example, the circular 

jog gesture must be recognized as such based on its shape, not just on the objects it 

happens to intersect.  In general, pattern classification is a broad and ongoing area of 

research.  Current research efforts seem aimed towards 3D gesture recognition of hands, 

bodies or other moving objects, either via image analysis or with the use of a sensor 

glove. 



 7

2.4. Scene Segmentation Research 
In traditional cinematography, a scene is the basic building block used to compose and 

convey ideas.  The ability to detect scenes allows a system to operate at a coarser, more 

semantically meaningful level than frame-by-frame manipulation.  There are several 

scene boundary extraction techniques currently in use.  Clustering techniques use shot 

homogeneity to cluster similar scenes with respect to visual similarity and time locality.  

Segmentation, on the other hand, looks at differences between shots to determine scene 

boundaries.  If shots are found to be different based on visual content and time locality 

they are grouped into different scenes.  [WCC01]  Both of these techniques are based on 

grouping shots with similar visual properties together. 

The cinematic model for scene detection attempts to give a higher-level semantic mean-

ing to extracted scenes.  A typical scene is a series of locations or dramatically related 

shots.  Many films are non-linear, which spreads related scenes throughout the timeline.  

The cinematic model approach brings the related scenes together providing useful se-

mantic content.  This approach starts off by using either the segmentation or clustering 

method to detect scene boundaries, but then takes the extra step of linking related 

scenes together based on visual correlation. 

One of the problems that come up in pixel-based visual pattern detection is finding false 

boundaries.  [BM99]  Fast camera panning and zooming are common techniques, and 

both can result in false boundary detection due to the rapid change in pixel information.  

Some methods that try to address these problems include histogram analysis and tem-

poral window pixel analysis.  The histogram approach looks at the colour or intensity 

statistics to determine scene boundaries.  The temporal window technique uses several 

separate windows within a shot and determines the relative changes within the win-

dows.  This technique addresses issues such as zooming and panning quite well.  



 8

3. Conceptual Design 
Before the advent of digital non-linear video editing, the only way to edit moving pic-

tures was to get down-and-dirty with the 

rolls of film.  The editor had to handle 

the footage manually, cutting strips with 

a knife, hanging them on racks for later 

use (see upper-left corner of ), 

before splicing them together with clear 

tape.  The process was painful and error-

prone, but it had a certain physical there-

ness that has been lost in the abstract 

modern systems.  The Video Bench tries 

to recapture the feeling of hands-on manipulation while keeping all the advantages of 

non-linear editing. 

Figure 5

 

Figure 5. A Steenbeck six-plate flatbed editor 

This chapter explores our user interface design for the prototype, by annotating screen-

shots and explaining the primitive operations that can be performed by the user.  All 

operations can be controlled using either a mouse or fingers, and both modes of opera-

tion are presented in each diagram for easier comparison.  The few details that have 

changed since the proposal are noted in the text. 

3.1. Benchtop 
Figure 6 shows a view of a typical benchtop.  The primary metaphor is strips of film 

scattered on a tabletop, showing key frames of their footage.  Notice the lack of any 

handles or widgets:  a gestural interface should make those unnecessary, and they 

would just clutter the desktop and detract from the metaphor. 



 9

 

contrail 

cel sprocket 
hole strip cursor divider 

Figure 6. Benchtop with legend 

This is also a good time to define some terms that we’ll need to use when describing the 

operations allowed by the bench.  Each file that a user imports is called a clip, and it is 

composed of atomic frames.  Neither of these is directly represented in the user interface, 

but the concepts are needed for precise explanations of some of the operations. 

The visible elements are identified in Figure 6.  Logically, a strip represents a sequence 

of frames.  Visually, a strip is a sequence of cels1 bordered by sprocket holes.  Each cel 

holds a part of the sequence of frames of the parent strip, with the density of the 

sprocket holes indicating the quantity.  Normally, each cel displays the key frame 

[GBW01] of its sequence, but the user’s operations can affect this.  If another frame is 

being displayed, a cursor ranging over the width of the cel indicates the frame’s position 

within the cel’s frame sequence. 

The position of pointing devices (whether mouse or fingers) can optionally be tracked 

with contrails.  The head of the contrail follows the movement of the pointer (leaving a 

fading trail behind), providing direct and obvious feedback on the application’s idea of 

the position of the pointers.  This could be particularly useful when the detection algo-

rithms are not completely reliable, as is the case for the Diamond Touch (see Section 
                                                 
1 These would normally be called frames, but this would have been easily confused with the actual 
frames that make up a clip.  Also, in real filmstrips, frames are laid out vertically.  We have chosen to use 
the horizontal orientation instead so that some of the most important operations that require two hands 
could be performed more easily, as dictated by human physiology. 



 10

4.2.2).  Control is further enhanced by highlighting the relevant visual elements before 

(and while) an action takes place, so the user is never in doubt about the operation they 

are about to trigger.  Visual continuity is also improved by animating all transitions:  

visual elements move smoothly between locations, and fade in (out) when appearing 

(disappearing). 

3.2. Play Toggle 
To edit videos, one must first 

be able to watch them:  the 

most basic operation is to 

play back a sequence of 

frames.  The user can start 

and stop playback by tap-

ping or left-clicking inside a 

cel, as shown in Figure 7.  

Toggling an inert cel starts 

playback from its first 

frame,2 within the cel itself, animating the cursor to match the video’s progress.  Tog-

gling a playing cel pauses playback, and toggling it again resumes playback from the 

current frame.  Double-tapping (or double left clicking) a cel resets it to the key frame. 

 

 

Figure 7. Toggling a cel 

Normally, playback is isolated to individual cels.  However, if a playing cel reaches its 

last frame and the next cel in the strip is showing its key frame, playback automatically 

transfers to the next cel, while the original cel resets itself (after a short pause to avoid 

visual discontinuity).  This mechanism integrates a projection of time onto the horizon-

tal axis (the strip of cels) with its original dimension (frames played within a cel), and 

allows a whole strip to be played by toggling its first cel, no matter how many cels it 

contains. 
                                                 
2 Since the key frame showing in an inert cel is not usually the first frame of the segment beneath it, this 
causes a visual discontinuity and may be confusing, but captures the most common usage.  An alterna-
tive would be to forgo key frames altogether and always play from the frame currently showing. 



 11

3.3. Spread and Fold 
While a strip on the bench is meant to evoke the idea of a real filmstrip, it cannot be a 

one-to-one representation:  a real filmstrip has far too many frames to fit on a typical 

display.  Thus, the strip is an abstraction where each cel stands for a number of frames 

in the video.  This is a kind of semantic zoom that can be used to provide context + de-

tail.  Figure 8 and Figure 9 show the spread and fold operations that allow the user to 

zoom in and out, respectively.  

 

Figure 8. Spreading a strip 

To spread by touch, the user positions her fingers between cels and moves them apart.  

The span selected by the fingers stretches, and additional cels are inserted to fill in the 

extra space; cells outside the selected span are not affected.  To spread using a mouse, 

the user first left-clicks to select the divider at one end of the desired span, then left-

drags the divider at the other end of the span to create more space.  Note that the num-

ber of frames within the span remains constant, so the density of cels must go down, as 

reflected by the sprocket holes.  At the end of the operation, the strip automatically col-

lapses to the smallest size that can hold the desired number of frames, discarding any 

unused space created during the spreading process. 

The only remaining question, then, is how to repartition the span’s frames between the 

newly increased number of cels.  The easiest option is simply to divide the frames 

evenly, so each cel within the span has the same density.  However, this is unlikely to 

lead to a satisfying user experience, since the key frames displayed in the cels may not 



 12

be representative of the cels’ contents, and the cels’ dividers (which are the easiest 

points at which to split strips, see Section 3.5) would not be conveniently located.  For 

these reasons, an algorithm for detecting key frames and segmenting clips into scenes 

may well be the key to making the Video Bench usable (see Section 2.4 for details). 

 

Figure 9. Folding a strip 

Folding a strip is the reverse of spreading it.  The user selects a span of cels and slides 

the dividers together, shortening it.  As the space disappears, cels are removed and 

frames rebalanced between the remaining ones.  Once again, cels outside the selected 

span are not affected. 

3.4. Move 
To maintain the illusion of a desktop with bits of film scattered on it, the user must be 

able to shuffle the strips around the surface.  This common operation is executed by 

“grabbing” a strip with multiple fingers (or with the middle mouse button) and drag-

ging it to another location, then releasing it (as shown in Figure 10).  Strips can overlap, 

but grabbing a strip immediately moves it into the foreground.  



 13

 

Figure 10. Moving a strip 

We were originally planning to let the user rotate the strip as she moves it.  In a collabo-

rative setting, it’s unlikely that all the participants will be seated on the same side of the 

table.  If they were working semi-independently, they would probably like “their” 

strips to be right side up.  Even if there is only one user, it is unnatural to keep every-

thing perfectly aligned.  Indeed, it seems likely that the orientation of an object can play 

an important part in organization and recognition processes.  Unfortunately, due to im-

plementation issues (see sections 4.1.1 and 4.2.1), we had to drop this feature from our 

prototype. 

3.5. Split, Splice and Jog 
We now come to the heart of any video editing system:  the ability to affect the order 

and presence of frames.  The Video Bench fulfills this requirement by letting the user 

split (Figure 11) and splice (Figure 12) strips.  Splitting a strip between two cels divides 

it into two strips, each containing the frames on either side of the splitting point.  The 

gesture used to split is a slicing movement across a divider, or a right-click with the 

mouse. 



 14

 

Figure 11. Splitting a strip 

Splicing is the natural opposite, combining two strips into one.  In the original proposal, 

the gesture for splicing required both candidate strips to be grabbed.  Having control of 

both objects would have made it easier to match them up, and prevented the accidental 

splicing caused by mistakenly dropping a strip close to another one.  However, having 

two loci of control is impossible with a mouse, and turned out to be very difficult to 

achieve with the Diamond Touch as well, so we dropped the idea.  Instead, dropping a 

strip onto another one with matching dividers overlapping will splice them together; 

we try to prevent accidents by giving a clear visual cue of the imminent action. 

 

Figure 12. Splicing two strips 

Combined with spreading and folding, these operations are sufficient to perform all ba-

sic editing actions.  The user can always keep spreading a strip until the right division 

point is picked between cels, then split the strip at that point.  This is hardly practical, 

though, especially since in the worst case the user might need to spread the strip down 

to frame level.  By that time, the strip would likely be hundreds of frames long, and far 



 15

exceed the display’s boundaries.  Though we can hope that the automated scene detec-

tion will be adequate some of the time, another method is needed.  

To give the user more control over split points, 

we introduce the “jogging” operation (Fig

 named after the jog dial common to video 

equipment.  By running her finger clockwise 

and counter clockwise in a circular motion3, or 

by rolling the mouse wheel, the user can control 

the frame displayed in the cel.  The bigger the ci

frames advance, making the gesture practical no matter how dense the cel is; there is no 

equivalent step size control for the mouse.  The cursor provides continuous feedback on 

the current frame’s location within the cut.  

Once a cel is se

ure 13)

so

 

Figure 13. Jogging through a cel 

 

rcle made by her finger, the faster the 

lected within a frame, either 

 are automatically cued to their first and 

cells ob-

                                                

through jogging or simply by pausing play-

back at the right moment, the user can split 

the strip mid-cel (Figure 14) by pulling her 

finger through the r than between 

them, or by right-clicking on the cel itself.  

This results in two strips, with the one on the 

right starting with the cel’s selected frame, 

while all frames before the selected one go 

into the strip on the left.  The newly split cels

last frame, respectively, to clearly show the point at which the split was made. 

Notice that a mid-cel split combines a split and a spread operation; the two 

 

Figure 14. Splitting a strip mid-cel 

 cel rathe

tained from the one that was split will have lower densities.  We can take advantage of 

 
3 Though the initial movement must be made within the cel, further movements can take place outside, so 
that the projection of the cel’s contents isn’t blocked by the user’s hand. 



 16

this by remembering the split’s location and, even should the strips be recombined, pre-

ferring the user’s choice of segmentation to any automatically computed ones. 

3.6. Grow and Shrink 
The final operation envisioned would allow the user to control the size of a cel.  The 

grow (Figure 15) and shrink (Figure 16) operations scale the cel on the horizontal and 

vertical axes while maintaining the correct aspect ratio.  When the gesture is complete, 

the cel is automatically recentred within the strip to prevent excessive deformation.  The 

operations are analogous to spread and fold, but affect the physical dimensions of the 

cel rather than the sequence of frames behind it.  They are performed in a similar man-

ner, by either grasping the top and bottom edge with fingers, or by left-dragging an 

edge with the mouse4.  The user is prevented from shrinking a cel below a minimum 

size, calculated from the centreline of the strip.  This makes it impossible to shrink a cel 

to minimum size using the mouse, since it only allows control of one edge at a time. 

 

Figure 15. Growing a cel 

Shrink/grow is a kind of zoom that provides focus + context, since the surrounding cels 

are pushed away (or brought in closer), but do not change size themselves.  The frame 
                                                 
4 Unlike spreading, it is unnecessary to first select the other boundary, since edges are strictly paired. 



 17

density of the zoomed cel doesn’t change either, which is represented by keeping the 

sprocket holes’ density (i.e. spacing) constant. 

 

Figure 16. Shrinking a cel 

3.7. Tools: Trash, Clone and Squish 
 It is likely that, as the user edits a video, they will end up with scraps of footage that 

bench:  we need to provide a trashcan to 

rget, brought up by a grasp (or middle-click) on an empty 

are no longer needed and just clutter up the 

get rid of them.  Conversely, when experimenting with different cuts, one copy of a 

strip may not be enough—the user might want to use a shot more 

than once, or hang on to a previous version of a strip for safe-

keeping, in case the new edits don’t work out.  The easiest way to 

cater to these requirements is to let the user quickly clone any 

strip.  Finally, when growing and shrinking cels, it would be con-

venient to be able to quickly return a whole strip to its minimum 

size.  

All of these operations can be modeled as a “splice” with a spe-

cial ta

 

Figure 17. Tool palette 



 18

area of the bench.  Using a common gesture to execute extended operations lowers the 

user’s conceptual overhead, and having the special targets pop up on demand is both 

convenient and keeps the bench uncluttered.  The design is also extensible, since more 

targets can be added to support other parameterless single-strip operations.  The vari-

ous targets are differentiated through the use of different colours and icons (Figure 17). 

4. Implementation 
This chapter provides details of the design’s implementation, explains the challenges 

urrent prototype’s limitations.  We chose Java as our imple-

ows XP and Mac OS X. 

4.1. Rendering 
The core component of the Video Bench is its display, the canvas.  The canvas displays 

m to be layered and translated, and to play 

4.1.1. Canvas Drawing 
iccolo

faced, and documents the c

mentation environment, since it’s a solid general-purpose language with extensive li-

braries that can be used for rapid prototyping, and (most importantly) well known by 

all the authors.  We standardized on JDK 1.4, in order to take advantage of some re-

cently introduced features and its generally improved performance.  Many (though not 

all) developers used the Eclipse IDE, backed by a common CVS repository.  Setting this 

up proved surprisingly troublesome, but once in place the infrastructure was very reli-

able. 

As a point of interest, the application is cross-platform5 and has been tested on both 

Wind

all the strips and their key frames, allows the

video within the cels.  There are two distinct but closely related subsystems:  canvas 

drawing and video manipulation. 

We used the 1.02-beta version of P  as our drawing framework.  Piccolo handles 

hierarchical nested coordinate systems that can be arbitrarily transformed, and is 

                                                 
5 With the exception of the Diamond Touch device interface, which requires native access to a machine’s 
serial ports.  This driver can probably be converted to pure Java once the low-level communication librar-
ies are added to the JDK. 



 19

hooked into the Swing event loop for input and animation.  Being fairly small, Piccolo 

Drawing contrails proved particularly difficult to accomplish.  Each contrail is a series 

of straight-line strokes painted with an alpha gradient.6  However, to overlap properly, 

the segments first need to be drawn using the Porter-Duff Source alpha compositing 

We also encountered many problems with rotation (some caused by bugs, others 

probably by our lack of understanding of the framework), and quickly gave up on rotat-

ing strips.  Rotation would have increased the complexity of all inter-strip layout algo-

The other piece of functionality needed is control over video playback.  We investigated 

the two leading media frameworks, QuickTime for Java

was easy to learn, but this simplicity was also its downfall.  It made many things possi-

ble without making them easy.  Since it’s a beta version, it also has its share of bugs that 

we needed to fix.  Piccolo could benefit from further refinement and the addition of 

more useful “extras”. 

rule, then composed on top of the canvas using the Source Over rule to preserve the 

transparency.  Since Piccolo doesn’t support rendering part of the node hierarchy to a 

side buffer, we needed to completely override the rendering logic for the contrail layer 

and manage our own buffer allocation and blitting. 

rithms and many of the transformation animations.  It turned out later that the gesture 

detection engine couldn’t deal with arbitrary rotation anyway (see Section 4.2.1).  We 

still hope to reintroduce rotation in a later iteration:  what little of it worked looked very 

promising. 

4.1.2. Video Framework 

 and the Java Media Framework 

he latter.  The current implementation of QuickTime for Java 

                                                

(JMF), and decided to use t

is not compatible with JDK 1.4, and in any case it’s only a thin wrapper around the C 

library that lacks the flexibility we require.  JMF, on the other hand, exposes its render-

ing path in an object-oriented manner and has a history of successful use for video edit-

ing in the Silver 2 project. 

 
6 Java does not provide facilities for tapered strokes, or for smoothed curves filled with a gradient. 

http://www.apple.com/quicktime/qtjava/
http://java.sun.com/products/java-media/jmf/


 20

We hooked up JMF to Piccolo by writing a custom JMF video renderer that writes each 

frame into a buffered image supplied by the canvas subsystem.  Whenever possible, the 

renderer requests that the codec deliver data in a format suitable for direct blitting into 

d composites, enabling editing.  We achieved this by manually 

T).  Through natural direct ma-

layed on the table, we anticipate users will be able to 

d length (re-

spectively) of the board; these sensors can detect if there is a touch somewhere along 

video memory, thus optimizing performance.  We use a triple-buffering system to rec-

oncile the video and canvas rendering threads.  At all times, one buffer is owned by the 

canvas to refresh the screen, one buffer holds the next fully rendered frame, and one 

buffer is used for writing the next frame.  The video renderer asynchronously notifies 

the canvas whenever a new frame is ready, and the canvas picks it up as part of its 

normal screen refresh loop.  While this arrangement requires extra memory for the 

buffers, it is very robust:  if the canvas refresh falls behind, it will simply skip frames 

and thus remain in sync with the other tracks of the video that are being rendered inde-

pendently (e.g. sound). 

Since JMF does not offer any abstractions of granularity finer than an entire piece of 

media (clip), we also needed to write custom decorators that would emulate the finer 

structure of segments an

controlling the start and stop times of the underlying player, and by manually starting 

the next player in a composite whenever the previous one reaches the end of its seg-

ment.  While expedient, this technique sometimes causes stuttering over splice points, 

depending on the underlying platform’s performance. 

4.2. Gesture Recognition 
Gesture recognition is a substantial component of our system as we endeavour to lever-

age the unique abilities of the DiamondTouch device (D

nipulation of video artefacts disp

conduct most operations by making simple physical gestures on the table. 

4.2.1. Multipoint Detection 
Unfortunately, due to its construction the DT provides rather rudimentary sensor data.  

It uses a set of horizontal and vertical sensors that span the entire width an



 21

their span.  This is enough information when only one point is being touched at a time 

o re-

d 

to multipoint gestures that rely on only two accurate points of input; it probably would 

The disambiguation algorithm is based on a simple concept that exploits a user’s natu-

ral tendency to put down one finger (first point) before choosing the second point.  By 

tracking the initial point we have a basis for comparison as subsequent data becomes 

available.  If we imagine the ambiguous reading as a four-corner square, the algorithm 

 

(by each user), but is insufficient to accurately indicate positions when two or more 

points are being touched at the same time.  There is inherent ambiguity since only the 

“projection” of the contact on the board is detectable (see Figure 18). 

Sensor 

ambiguous whether the 
us hin

A 

A spr

Z 

 

Figure 18. DiamondTouch sensor dat

Multipoint gestures thus presented considerable challe

available from the DT.  Clearly, po on ambiguity rder t

spond appropriately to users’ direct manipulations.  Fortunately, our system is limite

 

Data Given the sensor data, it is 

g at the 
points labeled A or Z. 

er is touc

a ambiguity 

nge due to the rather crude data 

 must be resolved in o the siti

have been impossible to detect more than two points accurately and consistently. 

essentially chooses which two new corners are closest to the previously detected points. 

Unfortunately, this algorithm is not foolproof since the choice of corners is ambiguous 

whenever the user “crosses the axis” (Figure 19).  For the multipoint gestures that we 

support this is not a concern since, in the situation below, we are primarily concerned 

with movement along the X axis, which both possibilities capture accurately.  However, 

this simplification no longer holds if the axis of interest is not aligned with either the X 

or Y axis, thus precluding arbitrary strip rotation. 



 22

 

 crossover ambiguity 

a

outline 
epresent table data 

ity 

Time 0: black squares 
represent fingers 
 

Time 1: one possibility 

 
 

orners of square 
Time 1: another possibil

C
r

Figure 19. Axis

re Issues 4.2.2. Hardw
Ultimately, the DT’s design philosophy is to blame for the difficulties we encountered.  

The table’s primary feature is the multi-user aspect, so its multipoint capabilities are 

” on 

s put down a second finger, the first data point sent seems to be 

7

                                                

somewhat limited by design.  While multi-user interactions are a unique feature, multi-

point interaction is very natural once you sit down at the table, suggesting that perhaps 

more attention could be paid to improve the multi-touch capabilities of the board.  

Drivers for the hardware could also be improved.  While the driver interface is expect-

edly low level it could be improved by providing consistent “data-transformations

all points of data.  For instance, the driver only provides interpolation on a single data 

point rather than the four-corner data points that it also delivers in every data frame.  In 

our implementation we had to implement this manually in our own work instead of re-

lying on the driver. 

In addition, some data from the board seems to be slightly erroneous in some cases.  For 

instance, when user

very inaccurate, an issue we resolved by throwing it away when the situation is de-

tected.  In addition, in practice, users occasionally momentarily lose contact with the 

board.  To address this we only considered users to have stopped touching the board 

after a prolonged period of no contact, about 3 data frames  depending on the operation. 

 
7 Three data frames equates to approximately a fifth of a second at the 15Hz data rate of the board. 



 23
4.2.3. Jog and Split Gestures 
Some of the gestures used in the application were first developed for use with a mouse.  

This was for two reasons:  first, access to the DT was limited, and second, to determine 

if it was possible to detect the gestures at all.  Implementation of gestures with a mouse 

turned out to be a relatively easy task.  The accuracy of the mouse made gestures such 

as jogging easy to detect in a small area, giving hope for eventual touch gesture detec-

tion.  A down side to this approach was that a mouse only provides one input channel, 

whereas we wanted to make gestures that used both hands or that used multiple fingers.  

However, we were able to develop the single-finger split and jog gestures using the 

mouse as input. 

When it came time to port the mouse gestures to the DT we ran into some complications.  

The first gesture that we ported was jogging, and even though the code was developed 

so that it could be easily adapted, it turned out to need fine-tuning.  It seemed that the 

DT would stop providing input data either because the user was not making a strong 

enough contact or because the user was moving too fast, whereas with a mouse you are 

guaranteed a constant and consistent data stream.  We had to modify our gesture to be 

fault tolerant and to accept occasional bad data. 

The jog gesture does not actually detect a circle, but rather a square-like shape.  It 

watches the motion of the pointer and figures out the direction it is traveling.  Once the 

direction changes it determines if it is now going in a valid direction, i.e. if it was origi-

nally traveling up it should now be going left or right.  At this point we can determine 

the user’s intended direction of rotation.  The recognizer continues to watch the data 

stream and ensures that subsequent movements are in the right direction.  Once the 

user is doing a forward jog, they cannot reverse directions unless the lift their finger 

and start a new jog going backwards.  The reason for this is that if you allow for mid jog 

changes it makes it hard to detect if the user wanted to jog or is just drawing lines from 

left to right.  This limitation proved unpopular with users (see Section 5.4). 



 24

Armed with experience, the split gesture was a lot easier to port.  The split gesture is 

simpler, only needing to determine if the direction of travel is vertical.  All recognizers 

also rely on information from the canvas to ensure that the detected gesture is applica-

ble to the objects it traverses.  For example, the split gesture requires that the pointer 

start on an empty piece of canvas, travel in an upwards or downwards direction, pass 

through a divider or a cel, finally stopping on an empty area.  

4.2.4. Other Gestures 
Move.  A move operation is triggered any time a bounding box that is more than 100 

pixels wide covers a strip.  In practice, this condition is triggered whenever the user 

puts her hand over a strip as if to grasp it.  Once the operation begins, the restriction on 

the width of the bounding box is lifted, to compensate for transient losses of contact.  

When the user stops contacting the board the movement is complete, and the canvas 

module automatically checks for splices. 

Grow/Shrink and Spread/Fold.  These operations are triggered whenever one contact 

point is over an edge (divider) and a second point touches an opposite edge (divider) on 

the same cel (strip).  Once the gesture has been recognized, only movement along the 

operation’s axis is considered. 

Play toggle.  This operation is triggered anytime there is a single contact point on a cel; 

the play is performed when the finger is raised from the board.  Recognizers for some 

operations (e.g. jog) can override the impending action if the user decides to extend the 

gesture (e.g. makes a circular gesture).  The double-tap reset to key frame was not im-

plemented. 

4.3. Scene Detection 
We would like to provide the user with a method of scene based editing by enabling 

some kind of scene boundary detection capability within our system.  Ideally, we would 

like the user to initially be presented with a broad overview of the scenes in their clips.  



 25

They could then take a scene and expand it to reveal the lesser scenes within, a process 

that could be carried out recursively all the way down to the atomic frame level. 

4.3.1. Current Implementation 
Video segmentation breaks up a clip into smaller pieces that enabled semantic time 

zooming.  However, there are many factors involved in determining where to segment 

a given video, many of which centre around the user’s intention.  Sometimes a user may 

just want to see more detail within a given section, in which case only a simple time-

based segmentation is required.  In other cases users may wish to segment a video 

based on scenes.  This requires a more complex video analysis based segmentation.  

There are a myriad of different ways a user may wish segment any given video clip.  

The user may even wish to segment different areas of the same video clip in different 

ways.  As developers we can make educated guesses as to how a user may wish to 

segment a video, but in the end it is the user who knows.  The key to any video segmen-

tation mechanism will be to allow the user the freedom they require to perform their 

intended tasks, while at the same time shielding them from the underlying details. 

Spreading gives more screen real estate to the content of the selected strip span.  Where 

there once was one cel being displayed there may now be two or three cells, each of 

which will display content that was in the original cel but may not have been visible.  

Currently, our video segmentation implementation is limited to time based segmenta-

tion.  When a user zooms in on a given cel, that cel is broken down into equal length 

segments.  For example, if a cel contains 2 seconds worth of video and the user spreads 

that cel into two cels, the frames will be partitioned into two equal segments of 1 second 

each.  The time partitioning is done on the fly, eliminating the need for any video analy-

sis or pre-processing. 

4.3.2. Segmentation and Clustering 
Time based segmentation takes no account of video content other than video length.  

However, there is a rich source of data in the video itself.  We would like to take advan-

tage of this information source and provide the user with scene based segmentation, 



 26

and perhaps even scene clustering capabilities.  Conceptually, a film editor breaks a 

movie down into smaller sections, most likely based on the individual scenes in the 

movie.  For example, a video may start with a scene in the kitchen, cut to a scene in a 

smoky French café, flash quickly to some shady activity in a back alley then cut back to 

the kitchen scene.  We would like to be able to automatically find these scenes in a 

movie and base segmentation around individual scenes rather than time.  

A simple use case scenario would start with a user opening some video clip and initially 

being shown some number of scenes.  We will call these the top-level scenes.  These 

scenes could be chosen on a time basis so as to provide an even overview of the video.  

The user may then decide that they want to work on a scene that they know is near the 

beginning of the video, but the scene is not currently visible.  They stretch out the first 

segment shown which reveals some of the scenes between the first two top-level scenes.  

They can repeat this stretching until they get to the desired scene.  If the user has some 

idea about the ordering of scenes within a video it should be quite easy to pull out the 

exact scene desired.  This removes the need to jog and allows the user to easily pull out 

the desired scene and work on it individually or within the context of the rest of the 

video.  

However, with the addition of scene boundary detection comes the problem of deter-

mining what type of zooming the user wishes to perform.  Do they want to zoom in to a 

particular scene, or do they just want an overall time-based zoom?  Some simple heuris-

tics could base the type of zooming on the zoom context.  If the user is at a coarse level 

of granularity it is likely that they would wish to perform scene based zooming.  If a 

user is focused on a single scene it is likely that they would wish to perform time-based 

zooming.  Of course, these hypotheses would require user testing to determine if they 

are useful. 

In addition to scene-based segmentation, an editor may be trying to decide where and 

how to re-cut a given scene, which may by spread all over the video.  This would be an 

ideal situation for scene clustering.  We could analyze scenes and determine which 



 27

scenes are similar.  This would enable an editor to easily find all the scenes in the 

kitchen, or all the scenes in the smoky French café.  This capability is inherently non-

linear and hence may not integrate well with the gestures metaphor, but it could be 

very useful nonetheless. 

4.3.3. Algorithmic Speculations 
It seems that it would be very difficult to develop an explicit algorithm that would de-

termine scene boundaries accurately and cluster scenes meaningfully.  However, we 

may be able to address this challenge indirectly by developing an adaptive scene detec-

tion system.  We could train the system to detect scene boundaries and teach it how to 

group scenes meaningfully.  Furthermore, we could have the users themselves train the 

system to perform as they see fit.  This approach has worked very well for language rec-

ognition and other “fuzzy” problems.   

One way to implement this technique would be to analyze individual frames and store 

several pieces of data for each frame, such as average contrast, color levels, gain etc…  

However, we need not analyze each frame in its entirety; we need only look at a minu-

tia of each frame.  This is often the approach taken in biometric data analysis as there is 

a vast amount of data but only a small percentage of it is of any interest.  We could then 

store data about each minutia point, from which we could perform our analysis.  As a 

user trains the system, they would essentially be telling the system which minutia val-

ues to look for when performing scene boundary detection and scene grouping.  Values 

such as the rate of change of a value over time, or average value differences could easily 

be compared and learned by the system. 

Unfortunately, due to time constraints these future considerations could not be imple-

mented or fully explored.  However, I think that the value added to the system would 

be considerable had they been put in place.  The approaches mentioned above would 

allow for a very customizable system, and a very flexible system overall.  As users re-

quirements would likely change from user to user, this would make for a much richer 

and useful tool. 



 28

5. Evaluation 
The direct manipulation video editing interface was evaluated by informally soliciting 

the opinions of a few users that we let play with our system.  Ideally, this type of 

evaluation should be carried out iteratively throughout the different design and imple-

mentation stages.  However, due to time constraints we only did a post-implementation 

evaluation test.  This provided feedback on whether the system met the expectations of 

users.   

5.1. Sample 
We gathered a small sample of test subjects for this evaluation.  This limited the formal 

accuracy of the evaluation, but still provided a lot of useful feedback.  The test subjects 

were computer science undergraduates and a visual arts graduate.  They ranged from 

moderate to novice users in using video editing systems, which included iMovie, Pre-

miere, Final Cut Pro, Media 100, and Microsoft Movie Maker.  All had been thoroughly 

exposed to the Video Bench concepts before the study began, further limiting the appli-

cability of the results. 

5.2. Method 
Before each user tested our system we gave them some general directions about how 

they should use the Video Bench system.  They were also provided with a user manual 

(see Appendix C), which describes verbally and pictorially how to use the system.  We 

asked them to perform specific tasks as well as do their own exploration of the system.  

All subjects used the touch interface first, then repeated their experiments using the 

mouse later.  Guidance was provided for the test subject as needed, if they required any 

assistance or had any questions.  

Each subject was encouraged to “think aloud” while using the system, verbalizing what 

she was thinking or what she wanted to achieve.  We observed the users while they 

were using the system and asked them short questions to encourage dialogue between 

evaluators and users.  The test subjects were surveyed afterwards via a questionnaire 



 29

(see Appendix B).  Three methods of questioning were used in the questionnaire: scalar, 

open-ended and multiple choice.  A Likert 5 point scale measuring agreement or dis-

agreement with statements was used.  We used both positive and negative statements 

for rating in the questionnaire, to ensure that the test subjects were reading the ques-

tions carefully. 

5.3. Questionnaire Results 
These results were obtained after the users had tested the system with both the mouse 

and touch interfaces. 

The users felt that they needed to learn a lot before they could use the system on their 

own and that they needed the support of a technical person initially for guidance.  They 

did not feel confident when using the system.  

They thought the most people would not learn to use the system quickly since it was 

not very easy or intuitive to use.  They also attributed this problem to the fact that the 

various functions of the system were not well integrated.  Therefore, they felt that they 

would not use a system like this frequently. 

They users were asked whether they would purchase the system for video editing at 

home if the system became commercially available.  They felt that their decision would 

mainly be based on retesting a more complete and final version of the product.  Some 

also had concerns about the cost as well as the hardware requirements. 

5.4. Observation Results 
The users felt that the tool is very futuristic and that it has a lot of potential with further 

development.  While they seemed thrilled and excited upon seeing the new system, 

they seemed uncertain as to how to proceed when seated in the operator position. 

The users seem to enjoy using both the mouse and the direct touch manipulation op-

tions, since they serve slightly different functions.  For example, the mouse seems to be 

better for precise clip jogging, while operations such as split and fold are more intuitive 

with touch gestures. 



 30

Our test subjects were asked to repeat the tasks done via touch manipulation with the 

mouse.  They seemed to have a great deal of difficulty at first with this transition, but as 

time passed they seemed to become just as comfortable using the mouse.  Certain func-

tions such as play toggle were simple and intuitive to activate with the mouse; however, 

others functions such as grow/shrink were more difficult and required reference to the 

user manual.  Some test subjects preferred the mouse operations over hand manipula-

tions since it provided them with more precision.  In general, the edges of the table pro-

vided the least precise contact.  Some functions were also flaky in practice:  the program 

sometimes seemed to “lose” the cel that the user was growing, and the tools menu 

jumped around the bench at random.   

A problem that was encountered several times was that it is difficult for the users to get 

back to the first or last frame of a cel.  They need to manually jog through to rewind to 

the beginning or forward to the end, and this process can be time consuming if the cut 

is lengthy.  Some users thought that they could drag the cursor directly to cue the video.  

Another problem with the dial jog was if a user was rotating the dial in one direction 

then reversed directions, the program seems to completely stop or slow down dramati-

cally before returning to normal operational speed.  This seemed to confuse and worry 

users. 

The users liked the contrails and the highlighting used when performing functions such 

as join.  Other features were controversial, e.g. mixing the sound of two movie clips be-

ing playing simultaneously.  Also, using the mouse, some incomplete strip rotation 

functionality was left in the code, attached to the mouse wheel.  Since the wheel also 

served as the middle mouse button, users often rotated strips while moving them with-

out realizing it.  While natural use was the intent of this operation binding, it should 

have been removed prior to testing since rotation was not fully implemented and could 

easily crash the application. 



 31

5.5. Suggestions 
Better space management is required, since the film strips can easily clutter the avail-

able space.  For example, if the tools menu happened to be nearby when spreading a 

strip, sometimes the strip would get accidentally trashed, duplicated, or squished, frus-

trating the users.  Part of this problem can be attributed to the small size of the Dia-

mondTouch table.  The original two-handed splice design would’ve also helped in this 

respect.  Due to the space constraints, the system is probably not suitable for use by si-

multaneous multiple users at this time. 

Furthermore, when attempting to move strips, if a user tried to use two widespread fin-

gers of one hand the system sometimes failed to recognize the gesture.  Most users re-

sorted to using two hands for moving strips.  Since most users would have preferred 

the single-handed method, the move gesture recognizer needs to be fine-tuned.  Also, in 

general, more precise touch detection is required with the tool, especially for stopping 

at the correct cel. 

Users requested some extra features while using the system.  The requests included an 

explicit time line view for the clips, and also some sort of separate audio manipulation.  

Many users were looking for some sort of undo function to recover from their mistakes; 

this issue was compounded by the accidental application of the irreversible trash tool.  

Even if a general undo function is not possible, it should at least be possible to recover 

deleted strips.  It would also be useful if there was an option for coarse but quick fast 

forwarding or rewinding of cuts, perhaps through direct dragging of the cursor (if it’s 

made larger). 

When using the mouse operations, error messages were displayed if the user tried an 

invalid operation.  Users really liked this feature, since it would immediately inform 

them of their mistake.  These error messages should also be extended to the hand ma-

nipulation. 

It might be nice to introduce an outline for the cels or wrap the cels in a white box to 

clearly separate the dividers from a dark cel.  This boundary would be particularly use-



 32

ful for mouse operations where the hit area to activate a function is very precise.  An-

other visual issue is some tools are the same color as the highlight, making it impossible 

to tell when they’re about to be activated.  It would be more helpful to use separate col-

ors.  Finally, some functions need to be renamed.  For example, although the words 

“splice” and “split” have different (opposite!) meanings, their similar sound confused 

some users.  It might be better to change “splice” to “join”. 

6. Conclusion 
The project was successful.  The Video Bench prototype achieved most of its goals in a 

very tight time frame, though it is still far from a practically usable system.  The proto-

type is visually attractive, and users seemed to enjoy their experience, even while deal-

ing with the frustrations common to prototypes. 

6.1. Achievements 
We have integrated gesture recognition and video rendering with a layered canvas sys-

tem.  The multipoint gesture recognition on the Diamond Touch table is a novel contri-

bution, and the Video Bench seems to be the only video editor that supports direct ges-

tural manipulation with continuous feedback.  Early evaluation results indicate that di-

rect gestural editing may be practical for certain types of tasks, though further research 

is needed to determine whether it is valuable. 

Unfortunately, we had to sacrifice some features that proved difficult to implement, 

namely strip rotation, multi-hand gestures and scene segmentation.  We also didn’t get 

around to testing the system with multiple users, though the prototype technically sup-

ports this functionality. 

6.2. Future Work 
First and foremost, the project needs further evaluation.  A formal procedure should be 

followed to compare the system’s utility against other video editors, as well as compar-

ing the touch, mouse interaction and mixed interaction modes.  The system should also 

be evaluated in multi-user cooperative settings. 



 33

On the implementation side, we should complete the work on strip rotation, enhancing 

simultaneous multi-user interaction.  This will require a revamping of the gesture rec-

ognition engine.  The scene segmentation and clustering engine also needs to be imple-

mented, and a better solution found for playing composite cuts without stuttering.  The 

system would probably benefit from some overall optimization work. 

We eagerly await improvements to the Diamond Touch table.  A larger work surface 

and more precise and faster contact detection would go a long way to improving the 

system’s usability. 

Finally, for long-term future research, it would be interesting to investigate ways to ex-

tend the system to deal with multiple separable tracks (e.g. audio and video), and spe-

cial effects (transitions, fades).  It might also be worth looking into integrating the direct 

manipulation paradigm with a traditional timeline, to take advantage of the strengths of 

both approaches.  The current prototype provides an excellent basis for future research. 



 34

References 
[Bux92] William Buxton:  Continuous Hand-Gesture Driven Input.  In Proceedings of 

the 5th annual ACM symposium on User interface software and technology, 
1992, p. 199-208. 

[GBC+00] Andreas Girgensohn, John Boreczky, Patrick Chiu, et al.:  A semi-automatic 
approach to home video editing.  In Proceedings of the 13th annual ACM 
symposium on User interface software and technology, p. 81-89, 2000. 

[GBW01] Andreas Girgensohn, John Boreczky, Lynn Wilcox:  Keyframe-Based User 
Interfaces for Digital Video.  IEEE Computer, 2001, p. 61-67. 

[KB91] Gordon Kurtenbach, William Buxton:  Issues in Combining Marking and Direct 
Manipulation Techniques.  In Proceedings of the 4th annual ACM symposium 
on User interface software and technology, 1991, p. 137-144. 

[LBS85] SK Lee, William Buxton, K. C. Smith:  A Multi-touch Three Dimensional Touch-
Sensitive Tablet.  In Proceedings of the SIGCHI conference on Human factors 
in computing systems, 1985, p. 21-25. 

[LMC+] A. Chris Long, Brad A. Myers, Juan Casares, Scott M. Stevens, and Albert 
Corbett:  Video Editing Using Lenses and Semantic Zooming.  Submitted for 
publication. 

[MGM93] James Matthews, Peter Gloor, Fillia Makedon:  VideoScheme: a programmable 
video editing systems for automation and media recognition.  Proceedings of the 
first ACM international conference on Multimedia, p. 419-426, 1993. 

[MP94] W. Mackay, D. Pagani:  Video mosaic: laying out time in a physical space.  In 
Proceedings of the second ACM international conference on Multimedia, p. 
165-172, 1994. 

[Rub91] Dean Rubine:  Specifying Gestures by Example.  In Proceedings of the 18th 
annual conference on Computer graphics and interactive techniques, p. 329-
337, 1991. 

[SG99] Bikash Sabata, Moises Goldszmidt:  Fusion of Multiple Cues for Video 
Segmentation.  SRI International, 1999. 

[UMY91] Hirotada Ueda, Takafumi Miyatake, Satoshi Yoshizawa:  IMPACT: an 
interactive natural-motion-picture dedicated multimedia authoring system.  In 
Proceedings of the SIGCHI conference on Human factors in computing 
systems: Reaching through technology, p. 343-350, 1991. 

[WCC01] Jihua Wang, Tat-Seng Chua, Liping Chen:  Cinematic-Based Model for Scene 
Boundary Detection.  National University of Singapore, 2001. 

[Wil97] Mark Willey:  Design and Implementation of a Stroke Library. 1997. 

http://doi.acm.org/10.1145/142621.142650
http://doi.acm.org/10.1145/354401.354415
http://doi.acm.org/10.1145/354401.354415
http://www.computer.org/computer/co2001/r9061abs.htm
http://www.computer.org/computer/co2001/r9061abs.htm
http://doi.acm.org/10.1145/120782.120797
http://doi.acm.org/10.1145/120782.120797
http://doi.acm.org/10.1145/317456.317461
http://doi.acm.org/10.1145/317456.317461
http://www-2.cs.cmu.edu/~silver/silver2.pdf
http://doi.acm.org/10.1145/166266.168442
http://doi.acm.org/10.1145/166266.168442
http://doi.acm.org/10.1145/192593.192646
http://doi.acm.org/10.1145/122718.122753
http://doi.acm.org/10.1145/108844.108939
http://doi.acm.org/10.1145/108844.108939
http://citeseer.nj.nec.com/wang01cinematicbased.html
http://citeseer.nj.nec.com/wang01cinematicbased.html
http://www.etla.net/libstroke/libstroke.pdf


 35

A. Statement of Contributions 
James Chisan 

In addition to my work on the gesture sections of the initial proposal and final 
report, I was responsible for making sense of the DiamondTouch table data.  This 
consisted of several sub-components: calling and setting-up the DT drivers ap-
propriately, transformations of input data according to world coordinate system 
and calibration parameters, facilitating calibration, performing finger tracking, 
gesture coordination and finally integration of the gesture system into the rest of 
the program.  Reid and I collaborated extensively to implement play/stop, 
spread/fold and move gestures. 
 

Azarin Jazayeri 
I wrote the Evaluation section of the original proposal, as well as the Evaluation 
chapter in the final report.  I made the original set of power point slides for the 
presentation (although Piotr modified it to better suit his presentation).  I di-
rected the user testing and evaluation by preparing the user manual and the 
questionnaire, and by observing the test subjects 
 
Note: As stated in our proposal, I was also going to work on the mouse manipu-
lation. I got to a good start and made the designs for simulating the hand ma-
nipulations using the mouse and completed the readings (papers and documen-
tations of tools used) that Piotr told me about. However, due to illness and short-
age of time, I was unable to finish the task. I took me quite a bit of time to actu-
ally get everything set up (Eclipse, JMF, and other tools used) with a lot of help 
from Piotr. By the time this was completed and I was reading the code written it 
was much too late for me contribute to coding.  

 
Jeff Cockburn 

My contributions to the project focused on video playback and video segmenta-
tion.  I collaborated with Jesse and Piotr to graft the JMF into our project.  As ex-
pected using any new technology the ratio of time spent learning the JMF to gen-
erating usable code was far more in favour of learning than implementation.  Un-
fortunately my involvement with the JMF dug into the time I was able to dedi-
cate to video segmentation.  I was able to develop a simple time-based segmenta-
tion algorithm to perform segmentation, but this did not provide the semantic 
zooming we desired.  I developed some code to detect scene boundaries within a 
video but the results of segmentation were unreliable and processing was ex-
tremely slow.  Some problems included detecting scene transitions such as fade-
outs, zooming and quick panning.  I wanted to implement a trainable system for 
scene detection; however, my lack of experience in this area required far more re-
search than time constraints allowed. 

 



 36

Reid Garner 
I mainly coded gestures with James; this work included integrating with the 
DiamondTouch display, which required a lot of debugging and tweaking.  I 
wrote about implementing some of the gestures and problems that were encoun-
tered with them as well as the DiamondTouch for the final report. 
 

Piotr Kaminski 
I came up with the original concept, the user interface and the design of all the 
operations.  I wrote the introduction, video research background, operation de-
sign, canvas implementation and conclusion sections in the proposal and final 
report, and thoroughly edited both documents.  I designed the system architec-
ture and implemented all canvas drawing and mouse manipulation.  I also did 
extensive refactoring on the video subsystem, and a fair amount of general de-
bugging (except gestures).  I prepared and delivered the in-class presentation, 
based loosely on draft slides provided by Azarin. 

 
Jesse Wesson 

I provided a brief introduction to commercial non-linear video editing software 
in the proposal.  My area of focus for the project proper was video playback and 
manipulation.  Before we started development, I examined the two media frame-
works QuickTime and JMF to see which would support our project best.  After 
we decided on JMF, I started to implement the custom video renderer that would 
provide the images needed by Piccolo.  Understanding JMF proved to be quite 
an undertaking and took some time but I eventually coded the necessary imple-
mentation needed (although behind schedule).  This was then incorporated into 
the design Piotr provided and the stubbed out classes were fleshed out.  Ironing 
out bugs also filled my time spent on this project. 
 
 
 

 

James Chisan  Azarin Jazayeri 

Jeff Cockburn  Piotr Kaminski 

Reid Garner  Jesse Wesson 



 37

B. Evaluation Questionnaire 
Informed Consent Information 

The general purpose of this study is evaluation of our project. Please be informed that, 
because this study is both anonymous and confidential, you will not be asked to return 
a signed consent form along with your questionnaire, as is normally required in studies 
of this type. Instead, return of your completed questionnaire will be taken as indication 
of your informed consent.  
 
Please also be informed that:  
• Your participation in the study is fully voluntary.  
• All information you provide in this study is anonymous, and will be kept strictly 

confidential. Any report of the study will not identify you personally in any way.  
• Although the length of time it takes different people to fill out the questionnaire 

will vary, for most people it should not take more than 15-20 minutes to complete.  
 

 
Please answer the questions below: 

 
1. Have you used any video editing system before? If yes, please specify which one? 
 
 
 
 
2. Do you consider yourself  a) an expert user in using video editing systems 

     b) a moderate user in using video editing systems 
     c) a novice user in using video editing systems 
 

3.  What did you like/dislike about the system? 
 
 
 
 

4. Do you prefer both the mouse option and the direct hand manipulation option 
or do you prefer only direct hand manipulation? Please, explain why? 

 
 
 
 

5. If this system became commercially available would you purchase it for video 
editing at home? Why or why not? 



 38

Please circle the appropriate number.  
(5= strongly agree  1= strongly disagree) 
 

6. I need to learn a lot of things before I could get going with this system 
  

1 2 3 4 5 
 

7. I felt confident using the system 
 

1 2 3 4 5 
 

8. I think most people would learn to use the system quickly 
 

1 2 3 4 5 
 

9. I found the various functions well integrated 
 

1 2 3 4 5 
 

10. I think I would need the support of a technical person to use this system 
 

1 2 3 4 5 
 

11. I thought the system was easy to use 
 

1 2 3 4 5 
 

12. How would you rate this program? 
 

1 2 3 4 5 
 

13. I think I would use a system like this frequently 
 

1 2 3 4 5 
 

14. Any suggestions/comments. 
 
 
 
 
 
 
 
 

Thank you for taking the time to fill out this evaluation questionnaire. 



 39

C. User Manual 
This is the user manual as it was provided to the evaluation subjects.  An updated ver-

sion will be included with the software package. 

Anatomy of a strip 
 

 

sprocket 
hole 

cel 
strip cursor 

 

Tools available 
 
Tool icon Effect 

 

Duplicate:  makes a copy of the strip 

 

Trash:  deletes the strip 

 

Squish:  shrinks all cels in the strip to their minimum size 

 
Operations Using the Mouse 
 

Operation Mouse 
Play / Pause Left click frame 
Reset to key-
frame Double left click frame 

Jog Roll wheel over frame 
Move strip Middle drag strip 
Splice strips Middle drag one strip until end divider lines up with end divider of 



 40

other strip, then release 
Split between 
cels Right click on divider 

Split within cel Right click on frame 

Spread / Fold Left click on one divider, then left drag another divider on the same 
strip 

Grow / Shrink Left drag top or bottom edge 
Show tools Middle click on background; middle drag to move tools 

Apply tool Middle drag one strip until an end divider overlaps the desired tool, 
then release 

 
Operation using hand gestures 
 

Operation Mouse 

Play 

Tapping an inert cel 

 
Pause Tapping a playing cel pauses playback 
Reset to key-
frame Tapping it twice 

Jog 

Make a small circle within a cel, then run your finger clockwise and 
counter clockwise in a circular motion 
 

 

Move strip “Grab” a strip and drag it to another location, then release it 
 



 41

 

Splice strips 

Middle drag one strip until end divider lines up with end divider of 
other strip, then release 

 

Split between 
cels 

Move down the cels from the top to the bottom of the strip, then release 
 

 

Split within 
cel 

Pull your finger through the cel 
 

 

Spread Positions your fingers between cels and moves them apart 
 



 42

 

Fold 

Select a span of cels and slides your fingers together 
 

 

Grow 

Drag hand in opposite directions up and down 
 

 

Shrink 

Drag hand toward each other 
 

 
Show tools Put your hand down on an empty part of the table, the icons will pop-up 



 43

Apply tool Move the film strip to the appropriate icon 
 
Try the following tasks using hand manipulation: 
- Remove the beginning (or end) of a clip.   
- Extract interesting scenes,  
- Duplicate and reorder them. 
Now do the above using the mouse. 
 


	Table of Contents
	List of Figures
	Introduction
	Target Audience
	Scope Restrictions
	Outline

	Background
	Commercial Video Editing Systems
	Video Editing Research
	Gesture Research
	Scene Segmentation Research

	Conceptual Design
	Benchtop
	Play Toggle
	Spread and Fold
	Move
	Split, Splice and Jog
	Grow and Shrink
	Tools: Trash, Clone and Squish

	Implementation
	Rendering
	Canvas Drawing
	Video Framework

	Gesture Recognition
	Multipoint Detection
	Hardware Issues
	Jog and Split Gestures
	Other Gestures

	Scene Detection
	Current Implementation
	Segmentation and Clustering
	Algorithmic Speculations


	Evaluation
	Sample
	Method
	Questionnaire Results
	Observation Results
	Suggestions

	Conclusion
	Achievements
	Future Work

	References

