
Customizing Lotus Notes to Build Software Engineering Tools

Jun Ma, Holger M. Kienle, and Piotr Kaminski
University of Victoria

Victoria, Canada
{majun,kienle,pkaminsk}@cs.uvic.ca
Anke Weber

ExperEdge Technology Partners
Victoria, Canada

weber@experedge.com

Marin Litoiu
IBM Toronto Labs
Toronto, Canada
marin@ca.ibm.com

Abstract

Many software engineering research tools are
stand-alone applications that have trouble in-
teroperating with other development tools and
do not fit well into the software developers’ es-
tablished work processes. Our main hypothesis
is that in order for new tools to be adopted ef-
fectively, they must be compatible with both
existing users and existing tools.

Typically, software engineering teams in an
organization share a set of common appli-
cations for their development activities that
are a permanent part of each developer’s ev-
eryday workflow. Among these applications
are shrink-wrapped office tools such as Lotus
Notes, which are used for, among other tasks,
email, scheduling, and project reports and pre-
sentations. These office tools, are highly inte-
grated and offer a mature, well-tested working
environment, which can be customized to an
extent that allows to provide support for ad-
vanced software engineering tasks.

This paper describes RENotes, a reverse
engineering tool built by customizing Lotus
Notes. RENotes targets software developers
who use Notes as part of their work environ-
ment. We describe Notes’ features and how
they can be leveraged to layer new reverse
engineering functionality on top.

Keywords: Lotus Notes, customization,
end-user programmable systems, tool adop-
tion, collaboration, Rigi

1 Introduction

It takes a lot of effort to go from the con-
ceptual design for a new software engineer-
ing technique to the development of tools that
supports the technique and finally adoption of
the tool in industry. Researchers that strive
to have their tools adopted struggle to de-
velop tools that satisfy the requirements that
software engineers in industry place on them.
Common examples of adoption hurdles include
difficult installation, lack of documentation,
unpolished/awkward user interfaces, and poor
interoperability with existing tool infrastruc-
ture. As a result, most research tools require a
significant learning curve while disrupting the
established work process of the software engi-
neer.

Tool development is a significant investment
and should focus on the novel features of the
tool. Unfortunately, the development of a base-
line environment, albeit often trivial to ac-
complish, requires significant effort before tool-
specific functionality can be tackled. This is
especially true for GUI-based tools that use a
visual manipulation paradigm.

In this paper, we outline a software devel-
opment approach that leverages a widely-used,
shrink-wrapped office tool—Lotus Notes—
by building a software reengineering tool,
RENotes, on top of it. Notes is the host ap-
plication that provides the baseline environ-
ment, including features such as document-
based database, collaboration, search, and se-

1



curity. RENotes leverages Notes to provide
software reengineering functionality such as ar-
tifact filtering and graph manipulation.

We believe that tool implementations that
follow this approach have desirable features
from the user and developer point of view.
Spinellis draws a similar conclusion for the field
of visual programming tools [21]:

“As many visual programming en-
vironments are research-oriented,
proof-of-concept projects, they
cannot easily compete with the
commercially-developed, polished,
and supported commercial IDEs.
In contrast, visual programming
based on the reuse of proven existing
components in a widely adopted
IDE levels the playing field and
allows research to focus on program
representations and methodologies
that can increase productivity rather
than supporting infrastructure.”

The reminder of the paper is organized as
follows. Section 2 gives more background in-
formation that guides our research. RENotes,
our case study, implements part of the func-
tionality of the Rigi reverse engineering tool.
Therefore, Section 3 gives a brief introduction
of Rigi and its functionality. In Section 4 we
further introduce Notes as the host application
for the RENotes case study. We first analyze
the baseline environment that Notes provides
and then discuss in Section 5 in detail how
we customized Notes to build RENotes. Sec-
tion 6 reviews related work. Finally, Section 7
summarizes our development experiences and
RENotes’ potential of improved adoption.

2 Background

This section discusses what we mean by tool
customization and categorizes both the so-
called host applications and the targeted users
in more detail in order to provide a better un-
derstanding of the requirements of our research.

2.1 Tool Customization

A prerequisite for our proposed tool develop-
ment method is that the host tool offers sophis-

ticated customization mechanisms. (Such tools
have been also referred to as user-tailorable
computer systems [14].)

Support for customization can be divided
into non-programmatic and programmatic cus-
tomization mechanisms. Non-programmatic
customization is accomplished, for example, by
editing parameters in startup and configura-
tion files or with direct manipulation at the
GUI level. Programmatic customization in-
volves some form of scripting or programming
language that allows the modification and ex-
tension of the application’s behavior. Program-
matic customization is more powerful, but re-
quires a significant effort. There is an initial
cost in acquiring the necessary customization
skills, followed by development and mainte-
nance costs of the customization.

It is an interesting question to what extent
users customize their applications. Page et al.
studied the customization changes that users
made to the WordPerfect word processor [18].
A surprising 92 percent of users in their study
did some form of customization, with 63 per-
cent using macros. They summarize their find-
ings with “users who most heavily used their
systems have the highest levels of customiza-
tion” and “customization features that were
simple to adapt (like the Button Bar) tended to
have higher incidences of tailoring.” The above
study suggests that tool builders should expect
that users want to customize their software;
thus, tools should offer extensive customization
support while making it simple and fast to use.

An early commercial product that allowed
users to create customized applications was Hy-
perCard, thus making “everybody a program-
mer” [8]. The Emacs text editor can be cus-
tomized both by parameter setting and by pro-
gramming in Emacs Lisp. Similarly, the Auto-
CAD system can be customized with AutoLisp.
An example of a highly customizable research
tool is Rigi [24] [23]. The Rigi graph editor al-
lows customization by exposing its graph model
and user interface with a Tcl/Tk API. Further-
more, Rigi graphs have a generic model that
can be customized to different domains. Spec-
ification files describe the kinds of nodes and
arcs that constitute a certain domain.

Tool builders have recognized the impor-
tance of making their software customizable

2



and by now many popular tools (such as Mi-
crosoft Office, Lotus Notes, Adobe Acrobat,
and Macromedia Dreamweaver) offer scripting
support and APIs to accomplish customization.

This paper focuses on the customization of
Notes. The feasibility of customization of
Notes has been demonstrated by a number of
large-scale projects. One such effort reports the
following experiences [12]:

“Users and developers have been pos-
itive about Notes. Advantages cited
include the relative ease of learning
how to develop basic applications, the
relatively short development cycle—
from a few days to a couple of weeks
per applications—and the fact that
users’ suggestions and feedback can
be incorporated into the applications
with relative ease and can be done on
a continuous basis.”

2.2 Host Applications

The development approach that we describe
grafts domain-specific functionality on top of
highly customizable tool foundations—we call
these tools host applications.

There is a broad range of candidates for host
applications. In our current research, we focus
on office suites (e.g., Microsoft Office, Lotus
SmartSuite, and OpenOffice) and productivity
tools (e.g., Lotus Notes and Microsoft Project).
From the programmer’s point of view, these
tools have commercial-of-the-self (COTS) char-
acteristics. Other promising candidates are ex-
tensible IDEs (e.g., Eclipse).

We classify systems that use COTS compo-
nents based on the scheme proposed by Carney
[2]:

turnkey: These systems use a single COTS
component on which they heavily depend.
Typically, customization is quite limited
and non-programmatic.

intermediate: These systems are also built on
a single COTS component, but also “have
a number of customized elements specific
to the given application.” The amount of
customization can vary, but does not fun-
damentally change the nature of the em-
ployed COTS component and results in a

moderate amount of newly developed cus-
tomization code.

mixed: These systems contain several (het-
erogeneous) COTS components to provide
large-scale functionality that is otherwise
not available. They have a significant
amount of glue code and are often difficult
to develop and maintain.

In our current research, we target intermedi-
ate systems (i.e., only a single host application
is selected and customization is done program-
matically).

2.3 Target Users

Another important consideration are the
users that the application targets. Karsten
[11]reviewed 18 case studies of organizations’
use of Notes and splits them into three groups:
exploratory, expanding, and extensive use of
Notes. Organizations with extensive use of
Notes had the following commonalities [11]:

“In all these cases, there were several
applications that were tied directly
into established work practices. Ap-
plication development was conducted
as a careful process, with prototypes
and user involvement.”

Thus, in the best case, the host application
is a fundamental part of the users’ work pro-
cesses. Evidence of such a mission-critical tool
are local developers (“gardeners”) that work
on customizations for their group. This has
been observed, for example, for CAD systems
[6]. An other example is the IBM Toronto Lab,
which has a dedicated development group to
customize Notes.

Host applications that are based on familiar
office tools provide a number of potential ben-
efits to users:

a familiar GUI: The user interacts with a fa-
miliar environment and paradigm. Appli-
cation knowledge (a.k.a. cognitive support
[26]) has been typically built up by the
user over years. Since the users are already
familiar with the standard functionality,
they can concentrate on learning the ad-
ditional, domain-specific functionality (in-
crementally).

3



tool interoperability: Office tools interoper-
ate among each other via cut-and-paste
and (file-based) import/export facilities.

tool support: Popular tools come with a
large infrastructure that provides useful
information to the user. For example, (on-
line) publications discuss how to use a tool
most effectively. Mailing lists and discus-
sion forums help troubleshoot users’ prob-
lems.

Stand-alone research tools are typically found
lacking in all of the areas outlined above.

2.4 Selection of Host Applica-
tions

Selection of a host application is a trade-off de-
cision. When deciding on a suitable host ap-
plication, one typically has to choose among
several possible candidates. A host applica-
tion has to satisfy two main criteria: it has
to (1) provide a suitable baseline environment
for extension, and (2) be familiar to its tar-
get users. The former criterion shortens the
development life cycle while the latter can ac-
celerate the adoption. Sometimes, these two
criteria may conflict with each other. Our host
application for RENotes is Lotus Notes. The
decision to select Notes was based on its large
user base in companies and its customization
flexibility. Although we did not formally eval-
uate the trade-offs, our observations and dis-
cussions with developer at the IBM Toronto
Lab hold up our assumptions. Notes appears
to be the most pervasive application within
the IBM Toronto Lab. Besides its use as a
group and peer-to-peer communication infras-
tructure, Notes is the host application for tens
of customized applications used by the Lab em-
ployees. About seven developers in the Lab are
currently involved in development and mainte-
nance of these applications.

3 The Rigi Reverse Engi-
neering Tool

In order to gain experiences and validate our
tool development approach, we decided to build
a reverse engineering tool on top of Notes that

is similar to Rigi as a case study. Rigi has been
under development for over a decade in our re-
search group at the University of Victoria. Be-
cause of our previous tool building experience
with Rigi, we are already familiar with the ap-
plication domain and can focus on understand-
ing customizations with Notes.

Figure 1: The Rigi reverse engineering tool.

Rigi is an interactive, visual tool designed
for program understanding and software re-
documentation. Figure 1 shows a snapshot of
Rigi. The core of Rigi is a generic graph editor
enhanced with domain-specific functionality for
reverse engineering tasks. Rigi uses typed, di-
rected graphs to convey information about the
target software system. Nodes of the graph
represent artifacts of the system (e.g., func-
tions, variables, and types) and directed arcs
represent artifact relationships (e.g., functions
calls, assignments to variables, and type decla-
rations). A simple example of a Rigi view is the
subject system’s call-graph. Nodes in the call-
graph represent functions of the program and
arcs represent calls between functions. Differ-
ent kind of nodes and arcs are visualized with
different colors. Rigi offers operations to select
and filter the arcs and nodes in a graph and al-
lows to apply several graph layout algorithms.

Even though Rigi can be customized with Tcl
scripting, it is a stand-alone application that is
not easy to integrate with other tools. Most no-
tably, short of taking screenshots, Rigi graphs
cannot be exported to other applications. This

4



is a severe drawback, because Rigi graphs are
the main work products of the reverse engineer-
ing activity, usually becoming part of the sys-
tem documentation [27].

Leveraging office tools to build reverse en-
gineering functionality seems a promising ap-
proach because the reverse engineering process
for a larger legacy system is both document-
intensive and collaborative. An important
problem is the task of organizing and archiv-
ing of obtained reverse engineering results, so
that they are available for future system evo-
lution. As described in Section 4, Notes has
features that address these problems.

4 Lotus Notes/Domino

Lotus Notes/Domino is a popular groupware
product that is used by many organizations
[10]. It is important to realize that Notes has
more to offer than email support. In fact, it is
often mentioned as the main software for sup-
porting collaboration and its use is extensively
studied by researchers in the area of computer
supported collaborative work [11].

Based on the client/server model, Lotus
Notes/Domino is often used to construct an in-
ternal information platform for an organization
[4]. In this platform, all information is rep-
resented as documents, which are stored and
organized in databases. Domino acts as the
server, providing database access; Notes hosts
the client applications that access the database.
In Notes, shared databases are the backbone
that enables collaboration among members in
an organization.

For many organizations Notes is a critical
part of their IT infrastructure. An example
is Statoil, a Norwegian state-owned oil com-
pany [17]. Statoil has a full company license
making it one of the world’s largest users of
Notes. Five years after its introduction in 1992,
Notes had diffused to most of the company’s
17000 employees, and its use was made manda-
tory. Statoil’s geographical distribution (40-
50 sites) makes collaboration-based features at-
tractive. The following collaborative features of
Notes are leveraged: email, document manage-
ment, workflow, electronic archive, group cal-
endar, news and bulletin boards, and discussion

databases.
IBM itself is another example of a company

that uses Notes extensively. From our obser-
vations at the IBM Toronto Labs, Notes has
been customized for a wide variety of applica-
tion, ranging from a simple carpool database
to a project application that allows a devel-
opment team to organize the work-products of
their project. With the Domino Web server,
Notes applications can be published on the
Web. When an HTTP request accesses a
database, Domino translates the document to
HTML. Thus, certain applications can be made
accessible with both Notes and a standard Web
browser. At the Toronto Lab, Domino servers
within the intranet allow Web access to appli-
cations.

4.1 Features

Before deciding on a host application, it is im-
portant to understand its key features. The
host’s baseline functionality and customization
mechanisms determines its suitability for build-
ing domain-specific functionality on top of it.

Figure 2: Lotus Notes mail application.

The user leverages the following features
of Notes’ baseline environment when using
RENotes:

User interface: Notes has a mature (if id-
iosyncratic) user interface that has been
consecutively refined over six major re-
leases. Figure 2 shows a snapshot of the

5



latest release, Lotus Notes 6. The user in-
terface includes a menu bar, a bookmark
bar, a tool bar, a status bar and a set
of window tabs. Tabs make it easy for
user to switch to different applications and
databases. Most of the GUI elements can
be customized. Furthermore, each tab has
its own set of task-specific menu items and
buttons. The mail tab, for example, has
a button to compose a new email (“New
Memo”) and a pull down menu with sev-
eral options on how to reply to the cur-
rently selected email (“Reply”).

Document-based database (DBD): The
documents in each database are organized
with views and folders. In Notes, every
document is a basic data unit that con-
tains a set of data fields. In this respect,
a document is similar to a record in a
relational database; however, a document
in Notes can be composed of an arbitrary
number of fields. Since all documents
adhere to this schema, it is possible to
access, manage, and manipulate diverse
documents in a uniform manner. Notes
databases support many data types,
including text, pictures, sound, video,
file attachments, embedded objects, and
applets.

Script automation: Users often take advan-
tage of customization to automate work.
A study about the customization behavior
of 51 users in a Unix environment found
that users “were most likely to customize
when they discovered that they were do-
ing something repeatedly and chose to au-
tomate the process” [13].

Notes provides users agent and actions to
accomplish automation. Actions are inte-
grated into the GUI and activated by users
(e.g., by pressing a button). Agents, which
run on the server, can be triggered by cer-
tain events (e.g., expiration of a timer).

Collaboration: Typical Notes applications
are message exchange, information shar-
ing, and workflow. By sending and receiv-
ing emails, members exchange messages in
an organization. By accessing document
in shared databases on servers, distributed

information exchange, retrieval, storage,
and consolidation is facilitated. Workflow
applications guide users through certain
tasks that they have to perform as part
of their work. Such guidance can reduce
overhead and mistakes, thus speeding up
processes.

Search: Notes has automatic search capabili-
ties as well as full-text indexing support.
Users can give keywords in the search bar
to retrieve matching documents sorted by
significance. For example, users can search
a certain folder in the mailbox database.

Security: In many large organizations, access
to information in databases needs fine-
grained access control as well as secu-
rity mechanisms for authentication. Ev-
ery Notes user has a digital ID and access
can be granted at different level, from the
server down to individual document fields.

5 RENotes Case Study

RENotes is our reverse engineering application
that we built as a case study to gain experiences
with our approach to tool-building. It lever-
ages Notes features wherever possible, supple-
menting them with custom functionality where
needed. In this section, we describe RENotes’
architecture and implementation, list the sup-
posed benefits to its adoption, and relate our
experiences with implementing and using the
application.

5.1 Architecture and Implemen-
tation

RENotes has been implemented with standard
three-layer architecture. Its major components
are shown in Figure 3. RENotes represents the
structure of the system under examination with
a typed, directed, attributed graph, similar to
the one used in Rigi (see Section 3). The graph
is initially produced using existing source code
parsers (e.g., Rigi’s cparse for C, or the CPPX
fact extractor for C++ [3]) and saved in Graph
Exchange Language (GXL) format [9]. GXL is
a XML-based exchange format popular in the
reverse engineering community. Its syntax is

6



defined with an XML Document Type Defini-
tion (DTD).

Figure 3: RENotes’ layered architecture.

The generated GXL file can be imported into
RENotes as a Notes database through a Java
agent. In order to perform the transformation,
the GXL file is parsed into an XML Document
Object Model (DOM) tree. The XML DOM
tree is then traversed and elements are con-
verted into the Domino Object Model.

Notes exposes its internal state with the
Domino Object Model [25]. This model al-
lows programmatic access to and manipulation
of the databases and application services. It
has been implemented for a broad range of lan-
guages, including the Formula language, Lo-
tus Script, Visual Basic, JavaScript, and Java.
Each object defines a set of properties and
methods. For example, the NotesDocument ob-
ject represents a document in a database and
has the method AppendItemValue to add a new
field to the document.

The graph to database mapping is simple:
each node and arc is mapped to a separate
new document with an automatically gener-
ated unique identifier. The type and other
attributes of each graph element are saved in
the corresponding document’s fields. Figure 4
shows a database with a small graph of 14
nodes. During the import, the graph is also
checked against a source code language-specific
domain schema, encoded in XML and held in
a separate Notes document. This ensures that
the graph is well-formed and meaningful so that
other tools can use it safely.

Once the data has been imported, users
can manipulate the documents with all the

Figure 4: Nodes in a sample RENotes
database.

usual Notes tools. They can search for spe-
cific nodes or arcs by keyword (cf. Figure 5),
or create filtered, sorted views of the (auto-
matically indexed) database based on complex
queries. The documents can also be accessed
through Notes’ standard automation features,
allowing users to write ad-hoc scripts to per-
form more complex operations such as bulk at-
tribute changes or transitive closures on the
system’s directed relationships. The user can
also select from a set of predefined scripts that
perform typical reverse engineering tasks such
as to find all callers of a function or accessors
of a field. These existing scripts provide use-
ful templates as a starting-point for users that
want to write their own scripts.

Access to the RENotes databases is con-
trolled by Notes’ security features; RENotes
defines some common user roles with various
degrees of privilege, restricting users’ actions
with fine granularity. All this functionality is
leveraged unchanged from Notes and should be
familiar to its users.

5.2 Visualization

The generic textual list views provided by
Notes are often not optimal for exploring the
structure of a system, so RENotes provides a
custom-built graphical visualization. The user

7



Figure 5: Keyword search of a RENotes
database.

first selects a subset1 of nodes to visualize. Ref-
erences to the nodes are gathered into a per-
spective document from which the user can pop
up the RENotes graph browser (cf. Figure 6).

Figure 6: Visualization of a RENotes database.

The browser—written in Java using the
open-source, Swing-based JGraph [1] graph
editing toolkit and embedded in the RENotes
database—provides a visual representation of
the nodes and all relationships between them.
All graphical elements are connected to the un-
derlying Notes documents, using the domain

1The subset may, in fact, be the whole graph.

schema to map their properties to visual at-
tributes. The browser offers basic navigation,
manipulation (most notably filtering of nodes
and arcs), and layout controls to help the user
investigate the system’s structure.

When the user exits the graph browser, its
state is saved in the corresponding perspective
document, encoded as XML. This allows the
developer to resume exploration of the graph in
a subsequent session. Each perspective docu-
ment thus represents a separate persistent view
on the system graph; the same node may be in-
dependently present in many perspectives. The
graph visualization can also be saved in Scal-
able Vector Graphics (SVG) format [5], so that
it can be embedded into other documents or
shared with people who are not using RENotes
or do not have the access privileges necessary
to open a perspective document.

6 Related Work

There are other office tools besides Notes that
are promising candidates for host applications.
In related projects in our group we extend Mi-
crosoft Visio and PowerPoint to visualize and
manipulate Rigi graphs [16]. Other research,
discussed in the following, has leveraged office
tools as well to build software engineering func-
tionality.

Desert is an open tool environment con-
sisting of several loosely coupled components
[19]. One of these components is a spe-
cialized editor for source code and architec-
ture documentation. This editor is based on
Adobe FrameMaker and uses a wide variety
of FrameMaker’s functionality, such as syntax
highlighting with fonts and colors, graphic in-
sets, and hypertext links. FrameMaker is ex-
tended via the Frame Developer’s Kit API.

Riva and Yang have developed a software
documentation process that uses Rigi to visu-
alize software artifacts [20]. They used Rigi’s
scripting capabilities to export this information
to Visio as a UML model. The authors take
also advantage of Visio’s ability to export Vi-
sio UML drawings as HTML to Web-enable the
documentation.

The Visual Design Editor (VDE) is a
domain-specific graph editor implemented with

8



VisualBasic on top of PowerPoint [7]. VDE
personalizes PowerPoint with new pull-down
menus and icons. The authors state: “Power-
Point offers a highly functional GUI for inter-
actively designing presentation graphics. Vir-
tually every part of that GUI is useful, without
modification, as part of our design editor.”

Tilley and Huang report on their experiences
with an industrial client in implementing a soft-
ware visualization and documentation system
in Visio [22]. Visio was selected after evalu-
ating the visualization capabilities of several
candidate tools. The authors were constrained
in their technology choices by the client’s poli-
cies. For example, ”the company reasonably
requested that professional support be avail-
able for whichever tools were selected. This
requirement immediately ruled out almost all
academic and research tools.” Among the iden-
tified benefits of Visio was that the client al-
ready employed Visio in their development pro-
cess and had a set of custom-developed stencils
to represent their software artifacts.

7 Conclusions

Even at this early stage, the RENotes project
has generated some interesting insights and po-
tential benefits to adoption, though more work
is necessary to evaluate the effectiveness of our
approach.

7.1 Development Experience

Building our application in Lotus Notes rather
than stand-alone has greatly reduced our de-
velopment effort. The benefits of reusing Notes
functionality more than offset the overhead of
adapting to a new development environment,
reducing lines of code by an (estimated) order
of magnitude. This also allowed us to build sev-
eral prototypes to verify and test the feasibility
of our ideas.

The JGraph framework proved also very
helpful: the graph browser application weighs
in at less than 4000 lines of code. By com-
parison, Rigi has about 30000 lines of C/C++
code, though it provides a richer feature set
than RENotes does. Overall, the majority of
the effort was directed at leveraging the po-

tential the Notes environment provides, as op-
posed to writing new code from scratch.

As with any framework, there are also some
limitations. Notes does not let Java clients
control its user interface, preventing the graph
browser from tightly binding visualized node
selection to a Notes document view. While
other APIs (for example, the Notes C API) may
afford more control, we did not consider these
languages suitable for rapid development of re-
liable software. There are also potential issues
with scaling RENotes to handle larger systems.
While we did not try large-scale experiments,
we are cautiously optimistic on this count since
Notes’ database kernel has been refined and op-
timized over the last decade.

7.2 Benefits to Adoption

RENotes made substantial strides towards im-
proved adoption by building on top of Notes.
Notes’ relatively large user base (as compared
to research prototypes) means that support
is plentiful and basic training easy to obtain.
Since RENotes reuses many of Notes’ features,
the learning curve is significantly lowered for
existing users, and even new users benefit from
Notes’ support network. Notes also has a ma-
ture, coherent user interface and many con-
venient tools, such as search and filters. To-
gether with Notes’ popularity, this should make
RENotes more appealing to domain experts
with no reverse engineering experience.

Notes support for ad-hoc end-user pro-
grammability is also critical to reverse engi-
neering efforts. Many reverse engineering tasks
are tedious to perform manually and, if so ac-
complished, cannot be recorded and reused.
Notes is fully scriptable and even offers users a
choice of programming languages that cover the
spectrum of formality, letting them pick a tool
appropriate for the task at hand. The abun-
dance of scripting options also makes it more
likely that a user already knows at least one of
them, further lowering the barrier to adoption,
and comparing favorably with research proto-
types that normally support at most one script-
ing method.

Building on Notes also lets us leverage its
support for collaboration, which should become
more important as reverse engineering projects

9



grow more complex. RENotes databases also
integrate well into the Notes workspace and can
be linked to other databases employed by the
user. By providing GXL import and SVG ex-
port capabilities, RENotes also integrates well
with applications outside Lotus Notes, making
it easier to fit into an existing workflow.

7.3 Future Work

In future work, we will add more of the Rigi
functionality and reverse engineering capabili-
ties to RENotes. Furthermore, we would like to
conduct a user study with software engineers at
the IBM Toronto Lab to gain a better under-
stand if, and how, RENotes lowers the adop-
tion barrier. Furthermore, we want to observe
how effectively Notes’ baseline environment is
utilized by RENotes users and how users will
integrate RENotes into their work environment
and processes.

The work on RENotes described in this pa-
per is part of ACRE V1.0 [16], the first ver-
sion of the software evolution environment un-
der development at the University of Victoria
as part of our Adoption-Centric Reverse Engi-
neering (ACRE) project [15]. In addition to
RENotes it consists of several other software
visualization engines on top of various office
products (e.g., Microsoft Excel, PowerPoint,
and Visio). We plan to compare and evaluate
our experiences with these approaches and use
the implementations for user studies targeted
to the question of how to further (industrial)
adoption of research tools.

Acknowledgments

This work has been supported by the Natu-
ral Sciences and Engineering Research Council
of Canada (NSERC), the Consortium for Soft-
ware Engineering (CSER), and the Center for
Advanced Studies (CAS), IBM Canada Ltd.

About the Authors

Jun Ma is a Master student in Computer Sci-
ence at the University of Victoria, Canada. He
received a B.E. from the Harbin Institute of
Technology in China. His research interests

include software engineering, XML technology,
and CSCW.

Holger M. Kienle is a Ph.D. student in
Computer Science at the University of Victoria,
Canada. He received a Master of Science degree
in Computer Science from University of Mas-
sachusetts Dartmouth and a Diploma in Infor-
matics from University of Stuttgart, Germany.
His interests include software reverse engineer-
ing, exchange formats for re-engineering, pro-
gram analyses, and domain-specific languages.

Piotr Kaminski is a Ph.D. student in Com-
puter Science at the University of Victoria,
Canada. He received a Master of Science de-
gree in Computer Science from the University
of Victoria, and a Bachelor of Mathematics
from the University of Waterloo, Canada. His
interests include software engineering, aspect-
oriented programming, the semantic web and
human-computer interaction.

Anke Weber is a principal of ExperEdge
Technology Partners, an IT consulting com-
pany based in Victoria, Canada. Prior to co-
founding ExperEdge, she has gained a variety
of experiences in the IT field in positions as
a co-ordinator for a European Union-funded
project at the Paderborn Center for Parallel
Computing, as a technical editor and writer
at dSPACE Inc., an international supplier of
tools for developing and testing new mecha-
tronic control systems, and most recently as a
Software Engineering Research Associate in the
Department of Computer Science at the Uni-
versity of Victoria, Canada. She received her
Master’s Degree in Computer Science from the
University of Dortmund in Germany. Among
here many roles, she appreciates most to work
as a designer, editor, and writer in both the
technical and non-technical worlds. Her cur-
rent research interests include adoption-centric
software engineering, web site evolution, and
“live” systems documentation.

Dr. Marin Litoiu is member of the Centre
for Advanced Studies at the IBM Toronto Lab-
oratory where he initiates and manages joint re-
search projects between IBM and Universities
across the globe in the area of Application De-
velopment Tools. Prior to joining IBM (1997),
he was a faculty member with the Department
of Computers and Control Systems at the Uni-
versity Politechnica of Bucharest and held re-

10



search visiting positions with Polytechnic of
Turin, Italy (1994 and 1995), and Polytechnic
University of Catalunia (Spain), and the Euro-
pean Center for Parallelism (1995). Dr. Litoiu’s
other research interests include distributed ob-
jects; high performance software design; perfor-
mance modeling, performance evaluation and
capacity planning for distributed and real time
systems.

References

[1] Gaudenz Alder. JGraph home page. http:
//jgraph.sourceforge.net/.

[2] David Carney. Assembling large systems
from COTS components: Opportunities,
cautions, and complexities. In SEI Mono-
graphs on the Use of Commercial Software
in Government Systems. Software Engi-
neering Institute, Carnegie Mellon Univer-
sity, June 1997.

[3] Thomas R. Dean, Andrew J. Malton, and
Ric Holt. Union schemas as a basis for
a C++ extractor. Eighth Working Con-
ference on Reverse Engineering (WCRE
’01), pages 59–67, October 2001.

[4] Mike Falkner. Using Lotus Notes as an
Intranet. Wiley, 1997.

[5] Jon Ferraiolo. Scalable Vector Graphics
(SVG) 1.0 Specification. W3C, Septem-
ber 2001. http://www.w3.org/TR/2001/
REC-SVG-20010904/.

[6] Michelle Gantt and Bonnie A. Nardi. Gar-
deners and gurus: Patterns of cooperation
among CAD users. Conference on Human
Factors in Computing Systems (CHI 92),
pages 107–117, May 1992.

[7] Neil M. Goldman and Robert M. Balzer.
The ISI visual design editor generator.
IEEE Symposium on Visual Languages
(VL ’99), pages 20–27, September 1999.

[8] Williams Gregg. Hypercard: Hypercard
extends the machintosh user interface and
makes everybody a programmer. Byte,
pages 109–117, December 1987.

[9] Richard C. Holt, Andreas Winter, and
Andy Schürr. GXL: Towards a standard
exchange format. Seventh Working Con-
ference on Reverse Engineering (WCRE
’00), pages 162–171, November 2000.

[10] IBM. Lotus home page. http://www.
lotus.com.

[11] Helena Karsten. Collaboration and collab-
orative information technologies: A review
of the evidence. The DATA BASE for Ad-
vances in Information Systems, 30(2):44–
65, Spring 1999.

[12] Tung Lai Lai and Efraim Turban. One
organization’s use of Lotus Notes. CACM,
40(10):19–21, October 1997.

[13] Wendy E. Mackay. Triggers and barriers to
customizing software. Conference on Hu-
man Factors in Computing Systems (CHI
91), pages 153–160, April 1991.

[14] Allan MacLean, Kathleen Carter, Lennard
Lövstrand, and Thoams Moran. User-
tailorable systems: Pressing the issues
with buttons. Conference on Human
Factors in Computing Systems (CHI 90),
pages 175–182, April 1990.

[15] Hausi A. Müller, Margaret-Anne Storey,
and Ken Wong. Leveraging cog-
nitive support and modern platforms
for adoption-centric reverse engineering
(ACRE). CSER Research Proposal,
November 2001.

[16] Hausi A. Müller, Anke Weber, and Ken
Wong. Leveraging cognitive support and
modern platforms for adoption-centric re-
verse engineering (ACRE). 3rd Inter-
national Workshop on Adoption-Centric
Software Engineering (ACSE 2003), pages
30–35, May 2003.

[17] Bjorn Erik Munkvold and Robert Anson.
Organizational adoption and diffusion of
electronic meeting systems: A case study.
ACM 2001 International Conference on
Supporting Group Work (GROUP ’01),
pages 279–287, September 2001.

11



[18] Stanley R. Page, Todd J. Johnsgard, Uhl
Albert, and C. Dennis Allen. User cus-
tomization of a word processor. Con-
ference on Human Factors in Computing
Systems (CHI 96), pages 340–346, April
1996.

[19] Steven P. Reiss. The Desert environment.
ACM Transactions on Software Engineer-
ing and Methology, 8(4):297–342, October
1999.

[20] Claudio Riva and Yaojin Yang. Genera-
tion of architectural documentation using
XML. 9th Working Conference on Re-
verse Engineering (WCRE 2002), pages
161–169, October 2002.

[21] Diomidis Spinellis. Unix tools as vi-
sual programming components in a GUI-
builder environment. Software—Practice
and Experience, 32(1):57–71, January
2002.

[22] Scott Tilley and Shihong Huang. On se-
lecting software visualization tools for pro-
gram understanding in an industrial con-
text. 10th International Workshop on Pro-
gram Comprehension (IWPC 2002), pages
285–288, June 2002.

[23] Scott R. Tilley. Domain-retargetable re-
verse engineering II: Personalized user in-
terfaces. 1994 International Conference on
Software Maintenance (ICSM ’94), pages
336–342, September 1994.

[24] Scott R. Tilley, Hausi A. Müller,
Micheael J. Whitney, and Kenny Wong.
Domain-retargetable reverse engineering.
Conference on Software Maintenance
(CSM ’93), pages 142–151, September
1993.

[25] Tommi Tulisalo, Rune Carlsen, Andre
Guirard, Pekka Hartikainen, Grant Mc-
Carthy, and Gustavo Pecly. Domino De-
signer 6: A Developer’s Handbook. IBM
Redbooks, December 2002.

[26] Andrew Walenstein. Improving adoptabil-
ity by preserving, leveraging, and adding
cognitive support to existing tools and en-
vironments. 3rd International Workshop

on Adoption-Centric Software Engineer-
ing (ACSE 2003), pages 36–41, May 2003.

[27] Kenny Wong, Scott R. Tilley, Hausi A.
Müller, and Margaret-Anne D. Storey.
Structural redocumentation: A case study.
IEEE Software, 12(1):46–54, January
1995.

12


