
Reef
Ph.D. Thesis Proposal

Piotr Kaminski
July 5, 2004

Table of Contents
Table of Contents ... 1
1. Introduction .. 2

1.1. Documentation ... 3
1.2. Unified Modeling Language .. 5
1.3. Costs and Benefits .. 6

2. Hypotheses.. 7
2.1. Wonders of UML (H1-H3).. 7
2.2. Travails of UML (H4-H6).. 10
2.3. Idiosyncrasies of Software Engineering (H7-H9).. 12

3. Tool Specification... 15
3.1. Requirements.. 15

3.1.1. Primary Use Cases (U1-U2).. 16
3.1.2. Secondary Use Cases (U3-U6).. 18

3.2. Architecture .. 19
3.3. Back-end Design... 20

3.3.1. Data Model.. 20
3.3.2. Data Flow .. 22
3.3.3. Platform... 24
3.3.4. Features ... 25

3.4. Front-end Design ... 28
3.4.1. Platform... 28
3.4.2. Data Management and Communication .. 32
3.4.3. User Interface.. 33

4. Conclusions... 38
4.1. Research Plan.. 38
4.2. Expected Contributions... 38

Bibliography ... 40
Appendix A. Sample Edit Action List... 48

 1

1. Introduction
Software evolution is a fact of (modern) life. As computers inveigle themselves into

every aspect of human existence more and more software comes into daily use. With-

out fail, this software needs to be fixed, extended or adapted to changing circum-

stances—and despite our best efforts at minimizing dependencies, the modifications

have an unfortunate tendency to snowball. Rebuilding the software from scratch is of-

ten not a viable option due to the high risks and costs involved, leaving gradual evolu-

tion as the only realistic approach.

However, software evolution brings its own set of issues to the table. Successfully

modifying any construct requires at least a partial understanding of it [Sta84], and that

understanding can be difficult to gain [Cor89]. Even if the attempt goes swimmingly,

the changes usually increase the complexity of the software, making the next effort

commensurately more difficult. There is some truth to the claim that, untended, soft-

ware systems gravitate towards incomprehensibility.

Why is software so difficult to understand? Some claim that it is the most complex arte-

fact ever designed by mankind: the human mind simply cannot keep track of the myr-

iad details contained in the source code, failing to see the forest for the trees. The

proven solution is to tame the complexity by raising the level of abstraction at which the

developer perceives the majority of the system, concentrating on only a manageable

quantity of details at any given time. During initial development of a system, these ab-

stractions drive the implementation and are thus naturally grasped by the developers.

However, when the project transitions into its maintenance phase, knowledge of the ab-

stractions quickly dissipates1 due to the diminished pace and personnel rotation. This

loss of abstraction is in large part what makes software evolution so difficult.

1 This is true even for projects that stay in “active” development on a continual basis, only the scale
changes: individual subsystems enter the maintenance phase as active development moves on.

 2

1.1. Documentation
Since source code drowns developers in details, the traditional, rational response is to

somehow provide additional information about the software at a higher level of ab-

straction. This documentation varies in form, author and time of creation; it is not clear

which kinds of documentation (if any) are beneficial to software evolution in various

circumstances (see Section 2.1). The following subsections discuss some common varia-

tions on this theme, emphasizing their deficiencies.

The easiest and most common way to record abstractions is

in source code comments. This practice is traditionally taught in introductory software

engineering courses and has seen widespread adoption in varying degrees. Comments

are convenient for a developer to write (no need to switch documents) and can be read

either as part of the source code or extracted into separate documents (Javadoc

(http://java.sun.com/j2se/javadoc/) and Doxygen (http://www.doxygen.org/) being the most suc-

cessful examples of the latter practice).

Source Code Comments

Even though the costs are low, the immediate benefits to the developer are low as well,

so comments do not always get written or kept up-to-date. Source code comments are

also limited to short, localized pieces of text, whereas certain abstractions are best ex-

pressed as diagrams or longer, coherent sections of prose. Comments are thus neces-

sary but not sufficient for documenting software.

The development of most software systems, especially large ones,

usually starts with some high-level documentation in the form of requirements, use

cases, and architectural decisions. Through analysis and design iterations, these docu-

ments then get progressively refined into running code. There is a strong temptation to

retain all of these design documents to assist with later evolution, preserving traceabil-

ity all the way into the code; in fact, many popular methodologies espouse this ap-

proach.

Design Documents

Unfortunately, this approach leads to an inflexible process that is hard-pressed to re-

spond to changing requirements and the developers’ understanding of the domain. The

 3

http://www.doxygen.org/

initial design documents are often purposely incomplete, informal or vague, meant to

be used as a guiding sketch then discarded [Fow04 p. 2]. If they are to be preserved,

they must be formalized and all modifications to the source code must be separately

documented, often at multiple levels of abstraction. The extra work has no immediate

benefits for the developer, who has a deadline to meet and is so immersed in the con-

crete software that the abstract changes are obvious. Consequently, design documenta-

tion is rarely kept in sync with the code.

There are two distinct responses to this problem. One is to acknowledge the failings of

formal documentation and leave developers free to update or discard documentation at

will, deemphasizing traceability. This approach is exemplified by the Agile Modeling

methodology. The other response is to formalize the development process, emphasiz-

ing strict models over code and imposing discipline through round-trip engineering

tools. The emerging Model Driven Architecture (MDA) movement seems to epitomize

these values. Neither response is very satisfying: the former often leaves a software

system with no useful documentation, while the latter straightjackets the developers,

reducing their productivity.

If software documentation was not written during for-

ward engineering, all is not lost: it is possible to reverse-engineer some of the system’s

abstract principles from the code. The process can be somewhat automated, with spe-

cialized tools (e.g. Rigi [Won98], others) extracting high-level features and inferring cer-

tain patterns. The end result is usually a set of diagrams (often graphs) that more-or-

less represent the structure and behaviour of the subject system and can serve as a

guide to the code.

Reverse-Engineered Diagrams

However, this process is necessarily imperfect [KS+02] as the implementation of an ab-

stract model is not an exactly reversible transformation [GA03]. Some abstract features

are diffused beyond recognition or disappear altogether, while other irrelevant “phan-

tom” properties emerge spontaneously from the code. These flawed results are exacer-

bated by primitive automated layout facilities [Eic02b, EG03] that, for even moderately

 4

sized systems, produce indecipherable renditions such as that displayed in Figure 1.

Research into improved algorithms is ongoing (see Section 3.3.4), but at the moment re-

verse engineered diagrams need a disheartening amount of human attention to look

presentable.

 end()

InteractionController

 BenchtopLayer(in Bench)
 findSplices(in Strip): BenchtopNode[]
 releaseToolchest(in Toolchest)
 setInteracting(in boolean)
 showTools(in int, in Point2D, in double): MoveController

BenchtopLayer

 SkyLayer()
 fullPaint(in PPaintContext)

SkyLayer

 Contrail(in int)
 fullPaint(in Graphics2D)
 getPathBoundsWithStroke(): Rectangle2D
 recordPoint(in Point2D)
 setParent(in PNode)
 terminate()
 updateBoundsFromPath()

Contrail

 Bench()
 createContrail(in int): Contrail
 createStrip(in Cut[]): Strip
 displayError(in Throwable)
 displayMessage(in Color, in boolean, in String): Message
 initialize()
 pickMessage(in Point2D): Message
 pickVideoNode(in Point2D): VideoNode
 showTools(in int, in Point2D, in double): MoveController

Bench

 Message(in Color, in boolean, in String)
 acknowledge()
 setOffset(in double, in double)
 setParent(in PNode)

Message

 MessageLayer()
 setBounds(in double, in double, in double, in double): boolean

MessageLayer

 BufferManager(in GraphicsConfiguration)
 acquireBuffer(in int, in int): BufferedImage
 releaseBuffer(in BufferedImage)

BufferManager

 Cel(in Cut, in BufferManager)
 beginResize(in int, in Edge, in Point2D, in Edge, in Point2D): ResizeController
 canSplit(): boolean
 dispose()
 getBottomEdge(): Edge
 getCut(): Cut
 getProjector(): Projector
 getStrip(): Strip
 getTopEdge(): Edge
 setBounds(in double, in double, in double, in double): boolean
 setTransparency(in float)
 split(in int): Strip[]
 squish()

Cel

 IllegalSplitException(in String)
 IllegalSplitException(in String, in Throwable)
 IllegalSplitException(in Throwable)
 IllegalSplitException()

IllegalSplitException

BenchtopNode

 Toolchest()
 beginMove(in Point2D, in double): MoveController
 setDirection(in double)
 setDistance(in double)

Toolchest

 DuplicateTool()
 activate(in Strip, in Side)

DuplicateTool

 TrashTool()
 activate(in Strip, in Side)

TrashTool

 Tool(in String, in Color)
 activate(in Strip, in Side)

Tool

 Strip(in Strip)
 Strip(in BufferManager, in Cut[])
 Strip(in int, in Strip, in int, in int)
 Strip(in int, in Strip, in int)
 animateToTransform(in AffineTransform, in long): PTransformActivity
 beginMove(in int, in Point2D, in double): MoveController
 beginSpread(in int, in Divider, in Point2D, in Divider, in Point2D): SpreadController
 calculateCelWidth(in Cut, in double): double
 delete()
 duplicate(): Strip
 getDivider(in int): Divider
 getNumCels(): int
 getNumDividers(): int
 indexOf(in Divider): int
 indexOf(in Cel): int
 isBusy(): boolean
 layoutToLeft(in int, in double): double
 layoutToRight(in int, in double): double
 popBusy()
 pushBusy()
 setTransparency(in float)
 shapeDividers()
 squish(in Side)

Strip

 SquishTool()
 activate(in Strip, in Side)

SquishTool

 getStrip(): Strip

«interface»
VideoNode

 deselect(in boolean)
 getSelectedByGroup(): int
 isSelected(): boolean
 select(in int)

SelectablePath

 getCel(): Cel
 getProjector(): Projector
 getStrip(): Strip
 setBounds(in double, in double, in double, in double): boolean

ProjectionSurface

 Edge()
 getCel(): Cel
 getStrip(): Strip
 intersects(in Rectangle2D): boolean

Edge

 Cursor()
 beginMove(in int, in Point2D): MoveController
 getCel(): Cel
 getStrip(): Strip

Cursor

 Divider()
 canSplit(): boolean
 getIndex(): int
 getStrip(): Strip
 shape(in Rectangle2D, in Rectangle2D)
 shape(in Cel, in Cel)
 split(in int): Strip[]

Divider

- NO_SPLICES 0..*

- bench0..1

- bufferManager 0..1

- bufferManager

0..1

- disc0..1

Figure 1. A diagram of 23 classes after automatic layout

Whole-system reverse-engineering is indubitably a painful exercise and a distant sec-

ond to having access to ready-made documentation. The questions, then, are (i) what

form should the extended documentation take and (ii) how to maximize the chances

that it will be produced?

1.2. Unified Modeling Language
To maximize the usefulness of the extended documentation we need to find a good

trade-off between its format’s expressiveness, density, and familiarity to developers.

For example, commented source code is fairly expressive (since it can represent most

abstractions) and very familiar to developers, but its dispersed nature makes it difficult

to form high-level pictures. Generic labelled directed graphs can be made to express

 5

most anything, but the simple notation has low density and the lack of standards pre-

vents easy interpretation by developers. Logic systems, such as Pi calculus or F-logic

[KLW95], are dense and highly expressive but completely incomprehensible to most

developers.

There is no universally optimal solution, so for this project I will constrain my inquiries

to object-oriented systems. In this domain, the Unified Modeling Language (UML)

[Fow04, OMG03] is the clear choice for abstract documentation. It is quite expressive

(especially when supplemented with the Object Constraint Language (OCL), though at

the expense of familiarity), and its graph-based representation is reasonably dense. Its

core constructs are well-defined and familiar to object-oriented developers who have

even a passing acquaintance of industry trends over the last few years.2 It is also suffi-

ciently flexible to model perspectives ranging from analysis to design to implementa-

tion, letting the writer fine-tune the documentation’s level of abstraction.

Though concentrating on UML restricts the potential audience, many of the techniques

introduced in Section 3 could be applied to other graph-based representations as well.

1.3. Costs and Benefits
As mentioned above, few developers bother to produce UML diagrams that describe

their systems; the reasons behind these inactions boil down to a perception that the

costs are too high and the benefits too few [Zei02]. Hence, to increase adoption of UML

documentation in the development process, we must reduce the costs and expand the

benefits, or at least improve the developers’ perceptions of these aspects.

The costs are the usual culprits, adversaries of adoption everywhere: complexity, ex-

pense, lack of support or polish, bad integration into an existing workflow [BJ+03].

Many of these concerns can be addressed with a carefully designed and well-

engineered adoption-centric tool; Section 3 presents a concrete proposal for just such a

tool. Sections 2.2 and 2.3 put forward a few hypotheses that form the theoretical foun-

2 Surveys indicate that UML’s penetration is low (around 34% in June 2002 [Zei02]), but it is my conten-
tion that many more developers can read UML than choose to write it.

 6

dation of the proposed design and the answers to which might explain why the current

crop of tools have failed to take the software development world by storm.

Much has been asserted about the benefits of UML diagrams with surprisingly little

validation. Section 2.1 restates some commonly accepted hypotheses and reports on re-

lated research. As a further deficiency, most of the supposed benefits are long-term and

reward third parties—hardly a potent motivation for the developer who needs results

right now. To remedy this shortcoming, Section 2.1 posits a few ways in which keeping

UML diagrams up to date might also help the developer.

2. Hypotheses
This section lays out a few hypotheses related to UML diagrams used as documentation

and software engineering practices. Many of the hypotheses are likely to be quite un-

controversial, but are stated for completeness’ sake. A longer discussion of the reasons

and evidence for and against each hypothesis follows its statement.

To avoid excessively nebulous discussions, I make use of the following more easily

measurable variables in the hypotheses:

• speed to mean a reduction in the time needed to complete a task;

• accuracy to mean a reduction in the number of errors in a task’s result;

• quality to mean an increase in the design quality of a product; and

• performance to mean any combination of the three.

The variables are probably not independent and quantifying any correlation between

them could be interesting as well.

2.1. Wonders of UML (H1-H3)
The hypotheses in this section explore various aspects of the claim that UML diagrams

contribute to software understanding.

 7

(H1) Documentation in the form of UML diagrams that are automatically updated

during development and reviewed by the developer increases the developer’s

accuracy and quality, and increases the development team’s performance.

This hypothesized benefit is the most important, since it directly impacts the develop-

ers’ work. Though reviewing the diagrams takes time (and hence will not increase the

developer’s speed), it can help spot high-level bugs (e.g., introducing an undesirable

dependency) and keep a handle on the quality of the design (see (H2)). For the rest of

the team, regularly updated UML diagrams make integration easier, and are superior to

raw source code deltas for tracking changes. Furthermore, the team lead can keep a

handle on architectural drift and nimbly steer the project away from danger before the

code has had a chance to set.

(H1) is in good company, with other projects trying to increase developers’ productivity

by closing a feedback loop. For example, JUnit automates regression testing, giving the

developer a nearly instantaneous red signal when the code fails a test. Hackystat [Joh03]

automates the collection of certain metrics in an attempt to keep a development team

informed about their project’s progress. There are many other efforts in a similar vein,

but I have not been able to find much formal discussion or empirical measurements of

their effectiveness.

(H2) Documentation in the form of UML diagrams allows for fast evaluation of the

quality of a system’s design without forming an understanding of the system.

Though UML diagrams can help with system understanding, this hypothesis claims

that the diagrams’ shapes themselves are closely correlated with the design’s quality. In

other words, the analyst does not need to parse and integrate the details of the seman-

tics conveyed by the diagrams, but merely glance at their topography, relying on the

superior human pattern-recognition skills. Naturally, this presupposes that the dia-

grams are nicely laid out (see (H6)); no matter how good the design, it is always possi-

ble to draw a ghastly diagram.

 8

This hypothesis is backed up by my personal experience marking projects in the Soft-

ware Engineering 330 course; within minutes of looking at the diagrams provided by

the students I formed an initial impression of the design’s quality (and its author’s

competence, which is closely related) that was usually born out by further detailed ex-

aminations of the source code.3 More formally, there has been an initial attempt to re-

late the shape of class diagrams to object-oriented metrics [Eic03], but with no empirical

evidence thus far.

Should these pioneering investigations pan out, the postulate might be extended to cor-

relate specific design principles (e.g., indirection, cohesion) to visual patterns.

(H3) Documentation in the form of UML diagrams improves the performance of third

parties in integration and maintenance tasks.

It is fairly well accepted that an understanding of (the relevant parts of) the software is

critical to performance on maintenance and integration tasks [MV95], and that docu-

mentation increases the speed, accuracy and quality of understanding [Vis97]. More-

over, one experiment indicated that the performance advantages conferred by superior

software development skills are voided in the absence of documentation [Try97], fur-

ther increasing the importance of documentation to organizations trying to get their

money’s worth from (expensive) highly skilled employees.

The jury is still out on whether UML is an effective form of graphical documentation

[TH03] [PC+01] [PC+02], but surely its popularity in the industry must stem from some

noticeable benefits rather than just being the result of the Object Management Group’s

advocacy efforts. I conjecture that UML documentation will have an overall positive

impact on maintenance performance, with the greatest improvement for adaptive main-

tenance, smaller for preventive and perfective maintenance, and smallest for corrective

maintenance. The rationale is that adaptive maintenance tasks require the most abstract

understanding—the province of UML diagrams—while corrective maintenance tasks

3 It is eminently possible that my final opinion was swayed by my initial impressions, so a proper ex-
periment would need an appropriate blinding protocol.

 9

require detailed understanding that can only come from the source code, obviating the

need for design diagrams.

2.2. Travails of UML (H4-H6)
This section concentrates on the obstacles to the production and understanding of UML

documentation.

(H4) Documentation in the form of UML diagrams updated throughout the develop-

ment process is of superior accuracy to UML diagrams produced before devel-

opment has begun or after development has ended. It takes longer to keep UML

diagrams up to date during development than to produce them all at the same

time. However, the time spent is perceived to be shorter by the developer in the

former case.

There seems to be a wide variety of opinions on when the design of a software system

ought to be documented. Traditional waterfall processes prescribe that the system be

designed and documented up front. Though still in use [NL03], waterfall methodolo-

gies have generally been discredited for most types of software projects as they have

proven too brittle. It is unlikely that the initial design will survive the coding phase, yet

the process makes no allowances for feeding changes back up the waterfall, so the

documentation is doomed to be incorrect.4 The converse approach of documenting af-

ter the fact has the advantage that complete information about the system is available,

but the developers have already forgotten many of the design’s important details. Post-

facto documentation tends to be superficial and rushed.

Documentation in hindsight has the benefit of a working system and
weeks/months of experience. Documentation in foresight is documentation based
upon conjecture. Neither is typically any good. [Bla00]

4 The Model Driven Architecture (MDA) movement takes a stab at this problem by prescribing a com-
pletely automated transformation from design models to code; by definition, MDA models are always
accurate. The merits of the MDA approach are a matter of some debate, but I believe its success will be
limited to a mostly irrelevant subset of well-understood waterfall-friendly projects [Amb03b].

 10

Incremental refinement should lead to more accurate documentation, but I have not

found any empirical studies to back up this hypothesis—perhaps the conclusion ap-

pears too obvious. On the other hand, incremental methods often decrease the speed of

development, which could make them a hard sell. We might be able to conceal this

shortcoming by making the iterations as short as possible and increasing their number

(e.g., 15 minutes every day). The total time spent would be the same (or even longer),

but perhaps the developers would perceive the smaller tasks as less onerous.

As you can surmise from the above, this hypothesis is very tentative and requires more

research into psychological factors and a solid empirical study to determine its truth.

(H5) There is an optimal window of opportunity for a developer to update documen-

tation to match changes to the source code. This window extends for approxi-

mately 24 hours from the time the code is committed.

If we want accurate documentation and we assume that code comes first (see (H8)), the

documentation must eventually be updated to match changes to the source code. As

mentioned in (H5), the update must not come too late or the developer risks forgetting

important details that would make the documentation inaccurate or incomplete. Con-

versely, the update must not be contemporaneous with code development as it distracts

the developer from the task at hand, reducing productivity and increasing perceived

documentation cost. Also, during development the developer is well aware of the

changing structure of the code, so he gains no benefit from an updated abstract model.

It follows that there is an optimal window of opportunity for the documentation update.

The value of 24 hours is an initial guess based on personal experience, but it is likely to

vary depending on the circumstances and would need to be refined via experiments.

(H6) UML diagrams that are nicely presented increase the performance of tasks that

require program understanding.

It is well known that visual structure affects memory [Kem99] and understanding

[Tuf97], and experiments have confirmed that the same factors affect UML [TH03,

 11

PAC00] and other graph-based model visualizations [HLN04]. Of course, opinions dif-

fer on what makes a nice presentation. There are various high-level guides for software

engineers who draw UML diagrams [Amb03a, MM03], recommendations targeted at

specific notational variations [PC+02, PC+01], and more-or-less computable aesthetic

criteria employed by automatic layout algorithms [EKS03a, Eic02a, KG02].

While more experimental results are always welcome, it seems safe to accept this hy-

pothesis as proven. The aesthetic criteria are more contentious and difficult to isolate

but it would once again seem safe to select a common subset, keeping in mind that it is

not possible to please everyone simultaneously.

2.3. Idiosyncrasies of Software Engineering (H7-H9)
This section lists three hypotheses that concern the adoption and use of tools for soft-

ware engineering activities. Unfortunately, the predictions concern effects that are hard

to quantify, so verifying these theories may prove difficult to the point that they should

perhaps be treated as axioms.

(H7) A tool’s adoptability is increased by its benefit to the user and decreased by the

magnitude of required changes to the user’s workflow.

It should come as no surprise that the more useful the tool, the more likely it is to be

adopted. However, unless a tool offers truly ground-breaking benefits (e.g., email, the

web), its adoptability will be moderated by how well it fits into a user’s existing work-

flow. For example, a tool might be adopted if it has limited benefits but could be

dropped right into an existing process (e.g., a minor update of a tool already in use),

whereas it would be ignored if it required a change in procedures. Naturally, there are

many other factors affecting adoption [BJ+03], but these two seem to be the most rele-

vant to the tool proposed herein.

How does this hypothesis relate to software documentation? Considering Section 2.1,

and barring external social or economic constraints that can have deleterious effects on

morale (“Document or you’re fired!”), producing documentation often brings little di-

 12

rect benefit to a developer. According to this hypothesis, any documentation tool must

therefore fit very well indeed into a developer’s workflow if it is to stand a chance of

being adopted.

(H8) The ground truth of a software system is its source code.

The development of a software system usually produces a wide assortment of artefacts,

from requirement lists and analyses to bug reports and code comments. It is rare that

all of them agree, either due to errors or simply because they did not keep up with the

system’s evolution. In these situations, though various documents may indicate what

the system was or should be, the source code5 provides the ultimate measure of what the

system is. The accuracy of all other artefacts must be judged against the reality of the

code.

A corollary is that source code is highly prized by developers and a tool’s automated

code generation or mutation must strive to be transparent in purpose and minimally

invasive.

(H9) Current approaches to round-trip and “tripless” integration between source code

and UML diagrams are fatally flawed.

Based on (H8), it is clearly important that UML diagrams be synchronized with the

source code. This is difficult to achieve with a typical stand-alone diagram editor:

changes to the diagram may not be correctly implemented in the code, while ad-hoc

code modifications are not reflected by the diagram. In response to this problem, many

tools offer round-trip engineering facilities that emit skeletal code based on the dia-

grams and can reverse-engineer updated source code back into a model. Unfortunately,

the code skeletons are so simple as to not be worth generating and the unsophisticated

reverse-engineering algorithms fail to extract a good portion of even the recoverable

5 By “source code” I mean all digital resources that are transformed into an executable system by the
build process. For this project, I am not interested in legacy systems whose source code cannot be rebuilt.
While MDA-like systems do technically fall under this definition (the models are the “source code” ac-
cording to my definition), I am not interested in these kinds of system either.

 13

subset of design features. Most damning is that the tools usually fail to support an it-

erative development process, reverse-engineering the diagrams from scratch every time.

Tripless tools—a modern take on roundtrip engineering represented in tools such as

Together (http://www.borland.com/together/) and EclipseUML (http://www.omondo.com/)—tightly

couple diagram editors and integrated development environments (IDEs). In these en-

vironments, the UML diagrams and the code are but two representations of a single

underlying model, and editing one also modifies the other. 6 This solves the synchroni-

zation problem, but raises serious new issues of its own.

First and foremost, the diagrams thus produced reflect the source code in every minute

detail. Far from being an advantage, this discards the greatest benefits of modeling: the

superior expressivity of UML and its power of abstraction. UML has constructs that

preserve developers’ intent, intent that is often lost when the model is translated to code.

For example, UML’s association classes, composition associations, constraints, and cer-

tain multiplicities encode important properties of the model but have no equivalents in

most programming languages. Furthermore, to be useful, UML diagrams must selec-

tively elide excessive clutter, raising the model’s level of abstraction to help the viewers’

minds grasp larger pieces of the whole [Bel04b]. The diagram is still drawn from a

software perspective [Fow04 p. 5], but at a design rather than implementation level.

Implementation-level tripless diagrams are normally used for two functions: code navi-

gation and refactoring [Fow00]. However, both are better delivered directly at the code

level. An IDE’s outlining and linking services provide superior context awareness, and

its refactoring tools are syntax-aware and thus less invasive (see (H8)). Thus, imple-

mentation-level diagrams fail to enhance understanding without improving on facilities

already provided by a typical IDE.

6 Not all of UML’s 13 kinds of diagrams can share a model with code. Typically, class, package and
sometimes interaction diagrams are supported; other diagrams are either not available or not linked to
the code.

 14

It would be possible to make the diagrams more abstract and expressive while retaining

a connection to the code—for example by a tripless version of the tool described in Sec-

tion 3—but there would still be little point in hosting such a tool within the IDE. It is

my experience that the activities of modeling and programming are mutually exclusive.

When modeling, I do not want to worry about the code that is being generated or man-

gled; similarly, when coding I will usually keep the model in mind (or in view, even),

but do not want to be bothered with decisions about which features to abstract, how to

lay out new elements, etc. While I may switch between the two activities often

throughout a day, they are best kept separate, and any automatically propagated

changes clearly indicated for my review when I next shift. A tripless modeling tool

could certainly respect these constraints, but would gain little from its integration into

the IDE.

At present, many people seem enamoured with the idea of round-trip engineering

[CTM03], though there are a few dissenting voices in the wilderness [Hol02]. The opin-

ion of software developers is unknown; since all top UML modeling tools include either

round-trip or tripless engineering as one of their features, a measure of the tools’ popu-

larities would not be indicative of the developers’ desires in this matter. There is some

anecdotal evidence that the tools’ code generation facilities are very rarely used, though

[Sho04].

3. Tool Specification
This section specifies the requirements and an initial high-level design for a UML dia-

gramming tool. The requirements and design were driven by the hypotheses presented

in Section 2, and the tool should in turn provide a platform for verifying some of those

propositions.

3.1. Requirements
The overall goal of the tool is to help developers efficiently create and maintain UML

diagrams that effectively impart an improved understanding of the system to their

 15

readers. It is not a goal to have the tool compete with scrap paper and whiteboards for

up-front analysis and design activities.

The tool’s adoptability is a priority in all requirements.

Since the Reef tool is software that operates on software, there is potential for confusion

when describing activity flows. For clarity, I always use “tool” to mean the Reef tool,

and “system” to mean the system being developed and documented.7

3.1.1. Primary Use Cases (U1-U2)

Figure 2. Primary scenario sketch

(U1) Update UML diagrams after the system changes.

The developer modifies the system’s source code and commits the newest version

into the code repository. The tool detects the event, parses the changed source code,

 16

7 Of course, I expect that during development “tool” and “system” will be the same, as Reef is used to
document itself. Eat your own dog food and all that.

compiles the project and runs instrumented unit tests. The tool then reverse-engineers

both static and dynamic implementation-level models of the system and updates the

system’s UML diagrams (creating new ones if necessary). If the developer specified any

“standing orders” when editing diagrams in the past (e.g., “don’t show private inner

classes”), the tool adjusts the diagrams accordingly. The tool emails diagrams that

have been significantly modified to the developer, with the changes highlighted.

The developer reviews the diagrams as time permits, perhaps comparing them to the

initial design sketches. If necessary, the developer edits the (changes to the) diagrams

to raise the level of abstraction, capture design rationales, and re-introduce design fea-

tures that became unrecognizable in the translation to code. Based on the edits, the de-

veloper also sets standing orders to automatically apply changes to current and future

diagrams according to simple rules. When the developer is happy with the diagram,

he approves it and sends it back to the tool. If the developer is unable or unwilling to

bring the diagram to a satisfactory state, he can delegate it to somebody else, split it into

smaller diagrams, or tell the tool to discard it altogether.

The tool integrates approved diagrams into the system’s documentation (e.g., Java-

docs) and processes any new standing orders, then notifies interested parties that the

diagrams have been updated.

(U2) Use UML diagrams to help system understanding.

A developer—not necessarily the system’s original designer or implementer—needs to

gain an understanding of the system. He browses through the system’s documentation,

 which includes diagrams that clearly indicate the last time they were validated. He

can navigate between diagrams by following hyperlinks, in both the documentation text

and in the diagrams themselves. He can adjust the diagrams’ display characteristics,

and even opportunistically correct and update them if authorized to do so. The tool col-

lects statistics on the relative popularity of the diagrams to help the developers in (U1)

and (U4) decide whether to invest the time to update the diagram or just throw it out.

 17

3.1.2. Secondary Use Cases (U3-U6)

(U3) Use UML diagrams to help evolve the system’s design.

The developer wishes to change the design of the system. He locates the relevant dia-

grams in the system’s on-line documentation and edits them to reflect the desired form

of the system. When the design is done, the tool collects all the edited diagrams and

highlights the changes, to make it easier to see what needs to be implemented. When

the modified code is committed, the developer can compare the reverse-engineered

diagrams against the ideal ones and resolve any differences before approving the lot.

(U4) Manage a project’s diagrams.

A team leader or manager wants to check the status of the project’s design diagrams.

The tool provides reports on stale diagrams, diagram update and consultation fre-

quency, developers’ diagram editing efforts, etc. Based on the information presented,

the manager can forward stale diagrams for revision to selected team members, delete

unimportant diagrams, etc. The manager can also decide to expose a summary of the

most important metrics on a “project dashboard”, to keep the team up to date about the

state of the diagram documentation.

(U5) Configure the tool for a project.

The developer wants to start documenting a system using the tool. The developer in-

puts the code repository’s connection parameters and his email address. If the system

has source code, the tool checks it out and proceeds to create and send out new dia-

grams as in (U1), as if though all the code had just been committed into an empty re-

pository.

Other configuration options could include setting the means of communication (email,

instant messaging, RSS) and associating multiple projects to share standing orders.

However, the developer must be able to initially set up the tool with a minimum of ef-

fort.

 18

(U6) Customize or extend the tool for different purposes.

The developer wants to adapt the tool to his needs, either by replacing existing compo-

nents or by adding new components to the framework, leveraging the existing func-

tionality and data model. To encourage a vibrant plug-in scene, the internal data struc-

ture and process flows of the tool should be easy to understand, and plug-ins should be

able to share data while not interfering with each other’s operation by default.

3.2. Architecture
This section provides a high-level overview of the tool’s design, as shown in Figure 3.

Server

Code analyzer

Diagram
layout engine

Version control system

Repository

XML

XML

various

User client

Email, RSS, IM, http / Internet

UML diagram

Generic viewer

Updates, rules

Update
controller

Web server
(optional)

file system
http / Internet

Figure 3. Tool architecture and deployment diagram

To maximize adoptability, the tool is designed to be minimally invasive. The users will

not need to install the tool on their machines; at most, they will be required to set up a

viewer that is not specific to this application (e.g., a virtual machine of some kind).

Hopefully, the viewer will be popular enough (see Section 3.3.3) that it will already be

available on most machines, easing the way for a viral8 spread of the tool. This de-

ployment strategy also lets the back-end engage in computationally intensive tasks

without engendering a perception that the tool is slow, unlike a desktop-bound applica-

tion.

8 I mean viral in the benign sense of “viral marketing”.

 19

For these reasons, all custom software is installed on the back-end web server, while the

front-end of the tool is transmitted to users as part of the diagrams. The primary means

of communication is email, as it is ubiquitous, push-oriented (receiving email requires

no explicit action on the user’s part), typically stored or cached locally and accessible

off-line (e.g., during a long-haul flight), and integrated into the user’s task management

processes. Other communication methods can also be deployed to increase the chances

of the tool fitting into the users’ workflow: instant messaging (IM) reduces update la-

tency, RSS9 allows for multiple anonymous receivers, and web access puts the control

back in the users’ hands by being a pull service.

The following subsections explore the design spaces for the tool’s back-end and front-

end in more detail.

3.3. Back-end Design
This section delves into the design of Reef’s back-end, starting with the underpinnings

of the data model, through an overview of the functional and data flows, and finally

with details of some of the more interesting components.

3.3.1. Data Model
All of the back-end’s responsibilities revolve around extracting and manipulating in-

formation about the system, so the data model and storage are critical cross-cutting con-

cerns for the tool. The model should be semi-structured [ASB99] to permit an explora-

tory approach to development unfettered by onerous schema alterations, and to even-

tually allow multiple independent extensions to the tool to cohabitate without tricky

schema integration. The model’s syntax should also be easily readable in its native

format to simplify debugging and increase adoption thanks to the well-known “view

source” effect [Shi98]. Finally, the model must have free database implementations

available to minimize the impedance mismatch and ultimately ensure its scalability to

large systems.

9 The acronym “RSS” expands to “Rich Site Summary”, “RDF Site Summary” or “Really Simple Syndica-
tion”, depending on who you ask—the acronym is about the only thing all the parties can agree on. An
upcoming remake of the standard may be called “Atom” (which does not expand to anything).

 20

I have quickly evaluated a number of

models according to the criteria

above; the results are summarized in

the adjacent table. The classic rela-

tional model has the advantage of

decades of development, and its strict

schema requirements can be partially overcome with careful use of a multitude of

keyed tables (as done in softChange [Ger04]). Even so, the scattered normalized data

tables make queries unintuitive and require a lot of up-front planning, making rela-

tional databases inappropriate for this exploratory project. The Meta-Object Facility

(MOF) [OMG02a], the model behind UML, is just as strict and generally considered un-

approachable by developers; XML Metadata Interchange (XMI) [OMG02b], the MOF’s

serialization format, never really took off. The Resource Description Format (RDF)

[RC04], on the other hand, was designed purposely for knowledge federation, but its

primitive triples substrate makes serializations difficult to comprehend and the tools

supporting it lack maturity. Playing in the same design space, Braque [Kam02a] has a

more sophisticated model, but cannot be meaningfully serialized and has barebones

tooling. The rich Graph Exchange Language (GXL) [Win01], agreed upon by the soft-

ware engineering community for exchanging models of software, was neither meant to

be human-readable nor intended to be used as a database model, so it fails to satisfy this

project’s selection criteria.

Criterion Model Flexible Accessible Supported
Relational somewhat somewhat yes
MOF no no somewhat
RDF yes somewhat somewhat
Braque yes no no
GXL yes no no
XML yes yes yes

Surprisingly, the Extensible Markup Language (XML) [BPS00] proves to be an out-

standing candidate. Used without schemas it allows complete flexibility while prevent-

ing collisions thanks to namespaces [BHL99]. Moreover, it offers ordered hierarchical

containment—a natural way to model source code—as a model primitive, a feature

unmatched by any of the others save Braque. Its syntax reflects the model directly and

is well-known by developers, and a fair amount of XML databases are available, both

open-source and commercially [Bou04]. XML’s main drawback is the model’s lack of

support for non-hierarchical relationships, but this is partially palliated by the advanced

 21

XPath [BB+03] and XQuery [BC+03] query languages implemented and optimized by

the databases.

I have provisionally chosen XML as Reef’s central data model language. Since XML da-

tabases are a relative newcomer to the data management scene, an evaluation of their

merits (or lack thereof [Pas04]) should prove valuable in and of itself as well.

3.3.2. Data Flow

Figure 4. Back-end data flow diagram

Figure 4 shows an overview of Reef’s proposed data flow. Source code is extracted

from the repository with an adapter, which checks out and (optionally) builds the code

and generates a list of files changed since the last run to cut down on unnecessary pars-

ing. A series of fact extractors parses the relevant code files, updating a language-

specific code model. These extractors may include a source code extractor, object code

extractor, a dynamic execution trace extractor, etc. The model is further filled in by fact

processors (e.g., a type resolver, aspect applicator, etc.), and finally an identity fuser cor-

relates new model entities with old ones, producing a list of model changes at a fine

granularity. All the fact extractors and processors are language-specific.

Next in the pipeline is a language-specific diagram extractor, which updates language-

neutral diagrams based on the changes to the code model. Any modified diagrams are

then incrementally laid out by a language-neutral diagram layout engine that makes an

effort to preserve the layout of unmodified elements. The diagrams are then ready to be

 22

further edited by the user, who can selectively amplify any action he takes (see Section

3.4.3). These amplifications are aggregated in a rule base that is used in later runs of the

extractors. The diagram extractors use the rules to decide whether and how to intro-

duce elements into the diagrams. The fact extractors may use the rules in more creative

ways to drive fact extraction. For example, if the user specified that a class is a collec-

tion and should be drawn as an association, and the static fact extractors have failed to

ascertain the type of the collection’s contents, the dynamic extractor may choose to in-

strument the code specifically to gain this information.

Note that there is no intermediate abstract domain model: the implementation-level

code model is transformed directly into diagrams, and each code entity may well gen-

erate multiple diagram elements. This differs from most “professional” UML tools that

insist on maintaining an independent abstract model that is then viewed through the

diagrams. When working with those tools, the user must remain aware at all times

whether he is making modifications to the underlying model or merely the view. For

example, deleting a class has one of two meanings: deleting its projection from a dia-

gram, or deleting the entity from the model and consequently its projection from all dia-

grams. It seems to me that maintaining a separate abstract model is an unnecessary

complication that produces no value for the user, who is only interested in the dia-

grams,10 and action amplification will prove a more intuitive way of effecting system-

wide changes.

Note also that nearly all data items in this flow are XML (represented by), so it

should be easy to insert additional extractors or processors. It should even be possible

to insert matching pairs of fact and diagram extractors that communicate custom infor-

mation through the code model without upsetting any other components, thanks to the

transparent extensibility of XML documents when queried properly.

10 This assumes that the UML diagrams are used for informal communication. In formalized code gen-
eration processes (such as the MDA) the abstract model is clearly paramount, but as mentioned in foot-
note 5 the Reef project does not cater to these methodologies.

 23

3.3.3. Platform
There still remains the practical question of which platform to use to support the archi-

tecture sketched out above. I have chosen to program the back-end in Java, since I

know the language well, it is well suited to back-end development, and its popularity

ensures a high level of third party support. As part of my preliminary investigation, I

have located several open-source libraries that would speed the development of Reef:

• eXist (http://exist-db.org/), an XML database written in pure Java that provides

document storage with automatic structural and full text indexing and highly

optimized collection-wide XPath and XQuery querying.

• CruiseControl (http://cruisecontrol.sourceforge.net/) and Anthill

(http://www.urbancode.com/projects/anthill/), two continuous integration applications

that provide a number of repository adapters, automatic builds and various noti-

fication options. CruiseControl is especially interesting as it has a well-

developed plugin interface and uses XML to communicate data between mod-

ules.

• QDox (http://qdox.codehaus.org/), a fast Java superstructure parser and ASM

(http://asm.objectweb.org/), a fast bytecode parser. I initially plan to implement Reef

for Java, since it is popular yet easy to parse. Adding parsers for other languages

(e.g., C# or ECMA Script) would improve Reef’s appeal and allow investigations

into multi-language projects, but is not critical to the proposed dissertation.

Finally, while Java is a robust language, its static typing and lack of advanced features

make programming a notoriously high-ceremony affair. Dynamic scripting languages

like Python and Ruby claim to improve productivity by stripping away much of the

“noise” and allowing developers to create elegant new constructs to make the code re-

semble a Domain Specific Language (DSL). It might we worth investigating these

claims in Reef: Figure 5 contrasts a Java code fragment to its equivalent written in a

slightly extended version of Groovy (http://groovy.codehaus.org/), a new scripting language

that can integrate tightly with Java.

 24

Java code fragment Groovy code fragment
reset();
ResourceSet rs = qs.queryResource(docId, "zero-or-one(//package/text())");
if (rs.getSize() == 1) packageName = (String) rs.getResource(0).getContent();
for (ResourceIterator it =
 qs.queryResource(docId, "//import/text()").getIterator();
 it.hasMoreResources();
) {
 addImport((String) it.nextResource().getContent());
}

for (ResourceIterator it =
 qs.queryResource(docId, "//*[localType][not(type)]").getIterator();
 it.hasMoreResources();
) {

 XMLResource tr = (XMLResource) it.nextResource();
 String localType = (String) qs.query(tr, "exactly-one(localType/text())")
 .getResource(0).getContent();
 String resolvedType = resolve(localType, tr);
 if (resolvedType == null)
 throw new TypeResolutionException(localType, "failed to resolve type");

 Element node = (Element) tr.getContentAsDOM();
 Element tnode = memDoc.createElementNS(JavaRipper.JAVA_NS, "type");
 ResourceSet rs2 = qs.query(tr, "localType/@arrayDim");
 if (rs2.getSize() == 1)
 tnode.setAttribute("arrayDim", (String) rs2.getResource(0).getContent());
 tnode.appendChild(memDoc.createTextNode(resolvedType));
 node.appendChild(tnode);
}

reset()
packageName = doc["zero-or-one(//package/text())"].value

doc["//import/text()"].eachValue { addImport(it) }

doc["//*[localType][not(type)]"].each {

 localType = it["exactly-one(localType/text())"].value

 resolvedType = resolve(localType, targetResource)
 if (resolvedType == null)
 throw new TypeResolutionException(localType, "failed to resolve type")

 it.append {
 j.type ({
 dims = it["localType/@arrayDim"].value
 return dims == null ? [:] : ["arrayDim" : dims]
 }.call()) [resolvedType]
 }

}

Figure 5. Comparison of Java and Groovy code

3.3.4. Features
This section contemplates some of the more interesting server components and the chal-

lenges they might pose.

In order to incrementally generate UML diagrams, Reef needs

timely access to the relevant source code from the repository. Notification of changes

can be attained by either event-based (push) or polling (pull) mechanisms, depending

on the facilities offered by the repository. All repositories also support change tracking

in one form or another, so it should always be possible to obtain at least a coarse-

grained list of files changed between dates or versions. To increase adoptability, Reef

should be able to interface with a wide selection of repository systems. CruiseControl

provides a multitude of simple adapters, though they usually rely on a native installa-

tion of the repository’s client tools. If installing native clients proves too onerous,

Source Code Retrieval

 25

Eclipse (http://www.eclipse.org/) has a few adapters that connect directly to the repository

server.

The most popular repository system—especially for open-source projects—is CVS, mak-

ing it the primary target for Reef’s implementation. Much has been written about ex-

tracting source code and its history from CVS repositories [ZW04, Ger04, FPG03],

though little of it applies to Reef. One major problem researchers have tackled is how to

reconstitute atomic Modification Requests from CVS’s non-transactional history log,

and match them to bug reports and other documents. Reef, however, only ties its dia-

grams to a point in time (possibly tagged with a version label); it does not care how the

changes are structured. I will probably use some version of the sliding window algo-

rithm to try to ensure that a new diagram is not generated in the middle of a commit,

but I can afford to use a large window size since it is not important to accurately sepa-

rate adjacent commits.

Another issue that is starting to be addressed in literature is how to deal with branching.

It is not clear how to link code branches to diagrams and merging can be difficult to de-

tect; I propose to ignore branching in this project unless it becomes unavoidable.

Static fact extraction from well-behaved statically

typed programming languages is now commonplace, even in commercial tools. Dy-

namic fact extraction, once the exclusive province of profilers and optimizers, is gaining

traction in the reverse engineering arena [GDJ02, HL03a], but few have tried to inte-

grate the two [Tar00]. Since Reef is meant to be used on code under development with

unit tests that compile and run—often a chancy proposition for legacy systems—it is in

a unique position to advance the state of the art in dynamic fact extraction. To avoid

generating unmanageably long traces, I propose at first to use dynamic extraction in a

focused fashion, to fill in blanks in the static knowledge base. When the static extractors

are unable to ascertain a needed fact (e.g., to infer the type of elements held by a given

collection instance [Dug99]), they could request a dynamic trace customized by weav-

ing in aspects specific to their needs [DH+03, Bel04a]. Both the ideas of having co-

Fact Extraction and Elaboration

 26

http://www.eclipse.org/

operating static and dynamic fact extractors [EKS03b], and of using aspects to instru-

ment code for reverse engineering, are fairly novel. A richer knowledge base should

also enable advances in the area of automated design recovery [GA03, KS+02, AFC98,

AC+01], saving the developer some effort when raising the diagrams’ level of abstrac-

tion.

On the fact elaboration front, the identity fuser is a critical component whose function is

to track the identity of code-level elements across revisions. Typically, reverse engi-

neering tools perform identity matching solely on the basis of elements’ names; this is

insufficient for Reef. For example, consider a method that the user has specifically de-

leted from a diagram. If the method is later renamed, but retains its implementation

and relationships to the rest of the code, then it is conceptually the same as its ancestor

and should remain deleted in the diagram. Of course, since the identity of an element is

merely inferred, it is not possible to be completely certain when it has or has not

changed. Nonetheless, many techniques from the burgeoning field of clone detection

can be brought to bear, suitably adapted to perform origin analysis [GT02, ZG03] in-

stead. More research is necessary to increase their accuracy, and perhaps integrate a

feedback cycle into the algorithms.

Good automated diagram layout will be critical to Reef’s acceptance:

there is little worse than having to “clean up” a large, initially incomprehensible dia-

gram by hand. Though much work has been done on layout algorithms over the years,

few researchers have tried to apply general-purpose heuristic global optimization algo-

rithms to the problem, probably because they tend to be computationally demanding.

However, thanks to Moore’s Law, computing power has grown exponentially over the

last few decades, and Reef’s architecture places the diagram layout process out of the

user’s sight, making efficiency less of an issue.

Diagram Layout

Simulated annealing [KGV83] is one such optimization technique that I have experi-

mented with in the past [Kam02b]. Based on a simple physical process, it basically ex-

plores the solution space in a semi-random manner. Though the results are obviously

 27

non-deterministic, 11 the algorithm has produced excellent results for the travelling

salesman problem and various component and wire layout tasks. The technique was

applied to generic graph layout with encouraging results [DH96], and has recently re-

surfaced as part of a general graph description and layout system [HM+02]. I propose

to further investigate the applicability of simulated annealing algorithms to UML dia-

gram layout, perhaps hybridized with genetic algorithms [EM96] and other promising

approaches [GJ+03, EKS03a, HL03b].

There is no guarantee that simulated annealing (or other global optimization techniques)

can improve the state of the art in UML diagram layout. However, no matter the out-

come, an additional result of this effort will be an objective aesthetic metric for UML

diagrams that could help in evaluating layout algorithms in the future.

3.4. Front-end Design
Reef’s front-end comes in the form of editable diagrams that are embedded in on-line

documentation and sent to developers for change ratification. The architectural con-

straints on the front-end make the choice of platform a primary consideration that,

given the state of client-side technologies, may impose considerable limitations on the

front-end’s other aspects.

3.4.1. Platform
There are few platforms that combine the universal reach of the web browser with the

richness of an interface capable of supporting real-time interaction with complex dia-

grams. Three technologies that play in this space are Macromedia’s Flash

(http://www.macromedia.com/software/flash/), Sun’s Java applets (http://java.sun.com/applets/) and

the Scalable Vector Graphics (SVG) markup language (http://www.w3.org/Graphics/SVG/). I

evaluate their suitability to the Reef project based on the following criteria:

• Penetration. How widespread is the client platform required to run applications?

• Installation. How easy is it to set up the client platform if it is missing?

11 Assuming the random number generator is actually random!

 28

• Storage. Does the platform allow applications to store data on the client machine?

• Programming. Does the platform’s programming language provide structural

support for large scale programs?

• Presentation. Does the platform provide a powerful vector drawing and interac-

tion framework? This can either be part of the platform or a third-party library.

• Repurposing. Can users take diagrams and embed them in their own documents

with a minimum of work? Can they extract pieces of the diagrams easily? Can

the diagrams be indexed by search engines? Can they be printed?

• Extensibility. Does the platform allow client-side applications to be customized

or extended in a modular fashion? Is it easy for users to add small new pieces of

functionality?

 While the platforms’ performance characteristics are also an issue, there is little data

available on the matter and none of it is directly comparable. Nonetheless, the per-

formance of Flash and Java applets should be sufficient, as there are working examples

of diagram editors on both platforms. Preliminary experiments indicate that SVG

should be able to render diagrams of moderate complexity as well [KWM02]. With

some confidence that all three

platforms satisfy Reef’s basic cli-

ent-side requirements, let us move

on to a more detailed discussion

of their pros and cons, as summa-

rized in the adjacent table.

Macromedia’s Flash is a

mature, nigh-ubiquitous, presentation platform; most browsers have the plug-in in-

stalled, but if not the download clocks in at a svelte 480Kb. However—especially

among open-source developers, part of the target audience for Reef—Flash has a repu-

tation as a toy for displaying annoying ads, with some people pointedly refusing to in-

Client-side platform Criterion Flash Applets SVG
Penetration High Medium Low
Installation Easy Moderate Moderate
Storage High None Low+
Programming Medium High Low
Presentation Medium Medium+ High+
Repurposing Low Low High
Extensibility Medium+ Low High

Flash

 29

stall it. This reputation is not completely undeserved, but Flash is certainly more than a

toy. In its latest MX 2004 version, Flash sports ActionScript 2.0—an implementation of

the perpetually in progress ECMAScript Edition 4 standard [Hor03], which adds class-

oriented programming features to the familiar untyped prototype-based 3rd edition

[EC+99]. In support of browser-hosted applications, the standard libraries provide

mechanisms for communicating with the server in XML, and Flash gives applications

access to as much local storage as they desire (subject to the user’s approval).

Flash also features a reasonably complete vector rendering and interaction engine. Al-

though only line and quadratic spline primitives are exposed to ActionScript, it is pos-

sible to build up sophisticated user interfaces, such as the impressive gModeler

(http://www.gskinner.com/gmodeler/)—an all-Flash UML class diagram editor. Regrettably,

applications are packaged into opaque binary blobs that make it difficult to dynamically

bundle the data or extend the code, but there are possible bridges from XML (e.g., Ki-

neticFusion (http://www.kinesissoftware.com/) or the very expensive Macromedia Flex

(http://www.macromedia.com/software/flex/)). A Flash application’s canvas is also not easily

exportable, limiting the ability of users to repurpose or extend the diagrams.

Java is an industrial-strength object-oriented programming language, mak-

ing it an excellent choice for Reef’s back-end. On the client side, however, Sun’s vision

of Java applets never really caught on. The Java virtual machine is available in many,

but by no means all browser installations, and it is rarely the latest version of the JDK.

We can hope that with the recent rapprochement between Sun and Microsoft, more re-

cent versions of the virtual machine will be bundled with Windows, but in the mean-

time the required download weighs in at a whopping 14.6Mb.

Applets

There are many vector drawing libraries available for Java, including the excellent Pic-

colo (http://www.cs.umd.edu/hcil/piccolo/), which I happen to be familiar with [CC+03]. How-

ever, Java applets suffer from the same problems as Flash applications: the live vector

drawing is not easily exportable, as it is highly dependent on the applet code, and writ-

ing extensions to an applet is a high-ceremony affair, unless the applet integrates some

 30

http://www.gskinner.com/gmodeler/
http://www.kinesissoftware.com/
http://www.macromedia.com/software/flex/
http://www.cs.umd.edu/hcil/piccolo/

kind of dynamic code interpreter. Worse, Java applets have no access to local storage

unless they are signed, but cross-browser applet signing is a tricky proposition. Java

applets are not a good fit for Reef’s client-side requirements.

SVG is a new vector graphics language designed and promulgated by the W3C.

SVG 1.1 [FFJ03] has achieved some small measure of success with developers, but suf-

fers from a low install base even though a browser plug-in is bundled by default with

downloads of Acrobat Reader (version 5 and higher). (The Adobe SVG viewer can also

be downloaded separately, weighing in at a reasonable 2.3Mb.) The W3C is also work-

ing on introducing many significant improvements to SVG 1.2 [Jac04]—some of which

are mentioned below—but upon release the install base will have to restart from scratch.

SVG

SVG 1.1 offers a dizzying array of vector graphics and declarative animation primitives,

all expressed in easy to repurpose XML. SVG 1.2 improves support for flowing and ed-

iting text, and introduces the Rendering Custom Content (RCC) facility12 [Qui03] for

declaratively specifying an SVG binding to an arbitrary XML vocabulary. SVG 1.2 also

adds access to a small amount of local storage, but this capability can be emulated in

SVG 1.1 through clever (ab)use of browser cookies, taking advantage of the integration

between the SVG plug-in and Internet Explorer. Of course, this forces the client-side

data to be small; see Section 3.4.2 for details.

SVG (both 1.1 and 1.2) is powered by 3rd edition ECMAScript [EC+99], making it emi-

nently extensible. This prototype-based object-oriented scripting language is reasona-

bly powerful, with first-class functions and closures, but provides no built-in mecha-

nisms for building large programs, such as encapsulation and namespace management.

To prevent the diagram editor code from quickly becoming unmaintainable [Gre04], it

should be possible to leverage the basic ECMAScript facilities into more expressive con-

structs. The jsolait library (http://jan.kollhof.net/projects/js/jsolait/) makes initial efforts along

these lines, but many other improvements beckon. The security concerns addressed by

12 It looks like RCC will be extracted from SVG and merge with the XML Binding Language (XBL) [Hya01]
into its own project in the near future. The functionality is similar to that provided by Microsoft’s HTML
behaviours [Wil98].

 31

http://jan.kollhof.net/projects/js/jsolait/

capabilities [MS03] as implemented in the E language (http://www.erights.org/) may inspire

an encapsulation strategy, and aspect-oriented and traits-based [SD+03, OA+04] pro-

gramming may help impose some structure on the language’s primordial prototype

system.

Using Java applets for Reef is infeasible (mainly due to the lack of client-side

storage), but both Flash and SVG (especially the upcoming version 1.2) look appealing.

They have complimentary characteristics: Flash is mature and widespread but old and

proprietary, while SVG is XML-based and open but virtually untested. I will initially

go with SVG 1.2, as it appears to be the way of the future and, as a new technology, may

provide fertile ground for interesting implementation-level research. However, should

being a pioneer prove too time-consuming or if SVG fails to deliver on its promises, I

will switch over to Flash.

Verdict

3.4.2. Data Management and Communication
The nature of a zero-install client component embedded in an email message poses

some challenges to data management and communication. Once a diagram is received

by the user, where should updates be stored? How should they be sent back to the

server, and possible concurrent changes reconciled? Answers to these questions will

have a direct impact on adoptability.

Since the client is likely to have restricted local storage access privileges, and since it is

inconvenient to reconcile diagrams based solely on the full documents, I intend to store

updates as a compacted edit list. Not only does this approach save space, but it also al-

lows users to send lightweight diagram “patches” to each other and enables the edits to

be reconciled using algorithms derived from real-time collaborative editing tools [Cor95,

SE98]. The same delta format can be used to commit updates to the server, with au-

thorization based on the authentication provided by the transmission protocol (e.g.,

cryptographic email signatures). A uniform delta storage and transmission format al-

lows for code reuse, reducing the client component’s size. However, the delta storage

 32

technique relies on edit lists being short, as they must be re-applied to the base model

every time an uncommitted diagram is opened by the user.

Due to the nature of the client, it is also impossible to include in the component all data

that may be of interest (e.g., past versions of a diagram) and to perform some computa-

tionally intensive operations locally (e.g., a full diagram layout). In situations where the

server’s assistance is required, the client should first attempt to establish a direct con-

nection to the server, but fall back gracefully on asynchronous communication protocols

(e.g., email) if necessary.

3.4.3. User Interface
Figure 6

Figure 6. Client user interface mock-up

 displays an initial mock-up of Reef’s user interface, as a visual reference for the

detailed feature explanations that follow. The diagram editor is shown running inside a

browser, though it could just as well run inside a mail client (subject to circumventing

excessive security restrictions).

The main interface area displays the UML diagram, with a title

providing context. The UML diagrams largely follow established OMG standards

[OMG03], but do not hesitate to depart from them if a popular notation variant is more

General Principles

 33

readable. Conversely, not all notational variants are offered, even if sanctioned by the

standard; rather, only a coherent subset is made available to the user. Taking such

freedoms with the standard is consistent with the “UML as sketch” perspective [FowA]

and makes the tool more prescriptive in flavour, to try to encourage developers to con-

struct good diagrams [MM03]. In this vein, I am considering disabling both the zoom-

ing and scrolling facilities normally found in editors, to force the diagrams into a rea-

sonable size suitable for effective communication. Use of fisheye distortion [Bed00,

JM03] could compensate for the inadequate resolution of current screen technologies.

There are two global interface modes that affect how the diagram responds to user ac-

tions. In browse mode, clicking on an element offers links to related information (e.g.,

other diagrams that contain this element, Javadocs, source code, etc.). In edit mode,

dragging an element moves and resizes it, while clicking one selects it as the target for

context-sensitive commands displayed on the left. In Figure 6, the toString() operation of

the File class is selected, and relevant commands for the operation element and its ances-

tors are listed in the left column. This “taskbar” approach, similar to the one used in

Windows XP Explorer, flattens the learning curve and enables casual use of the tool,13

while experts can customize the hotkey bindings. Naturally, all commands applied to

the diagram can be undone (to some reasonable depth), and a diagram can always be

reverted to its original form thanks to the delta storage mechanism.

Due to Reef’s workflow design (see (U1)), we can safely assume that the vast majority of

a diagram’s contents will have been generated via reverse-engineering, leaving the user

to refine and fine-tune the diagram. For this reason, Reef’s client-side command set

concentrates on alteration rather than creation14 (see Appendix A for a sample list of

commands for class diagrams). For example, combining a pair of read/write accessors

into an attribute is a single action in Reef, whereas in typical diagram editors the user

13 My observations of casual Windows XP users indicate that they prefer to use the taskbar even if the
same commands are available in a right-click context menu. This is true even of users that have learned
much more complex and efficient user interfaces in their specialized applications.
14 This might go as far as not letting the user create new diagram elements at all, though such a restriction
might not prove workable in practice.

 34

would delete the two operations and create a new attribute manually. Not only will

such commands speed the editing process, but they will also maintain traceability to the

underlying implementation-level elements, allowing further automation of diagram

maintenance. For example, should the data type of the accessors mentioned above

change, Reef could automatically update the type of the corresponding “virtual” attrib-

ute; this would not be possible with the manual delete/create approach.

Even with a rich set of refinement-oriented commands, touching

up every new element of an updated diagram can be very repetitive. To alleviate the

tedium, Reef offers an action amplification mechanism. After applying a command to

an element, the user is given the chance to amplify its effects over the element’s con-

tainer, the diagram, all diagrams in the current project, or all diagrams in the repository,

as appropriate. Not only is the action’s target generalized and the command immedi-

ately re-applied, but the amplified action is kept by Reef and automatically applied to

new elements that match the pattern as they get created.

Action Amplification

Figure 7. Action effect and amplification mock-up

For example, consider Figure 7: the toString() operation in the File class was just deleted.

The Amplify box in the left column now proposes various ways to expand the scope of the

 35

deletion. The user can choose to delete all operations in the File class; though this would

have no immediate effect (as there are no operations remaining in this class), any future

operations added by reverse-engineering code would be automatically deleted by Reef

before ever being shown to the user. Similarly, if the user chose to amplify the action to

all toString() operations in the project, all current and future toString() operations would be

deleted automatically.

Potential amplifiers are specific to each command; Appendix A gives some examples

for class diagram commands. Simple amplifiers, such as applying “hide operation sig-

nature” to the whole diagram, take the place of separate preference options common to

other tools. For example, it is often possible to hide some feature of an element through

a pop-up menu, but to hide the same feature in the whole diagram requires finding a

separate preferences dialog box; in this case, action amplification becomes a sort of

“preferences by example”. On the other hand, more complex effects are possible. If

Reef notices that the user always deletes operations that start with the word “test”, next

time it might offer to amplify the action to delete all operations that match the pattern

“test*”. The user could also enter arbitrary selection patterns using the full XPath lan-

guage, making for a powerful facility with a gentle learning curve.

Although action amplification could greatly speed up touch-up of incrementally gener-

ated diagrams, there are potential pitfalls. The wider an action’s scope, the better the

chance of finding a situation in which it is not actually applicable. There must be a way

for the user to examine the amplified actions affecting an element (even a deleted one!)

and make exceptions. Ultimately, action amplification is a general declarative diagram

transformation facility, and as with all such services, a balance must be reached be-

tween the time saved through automation and the time spent on maintaining the rule

base.

 36

When a developer receives

an updated UML diagram for review, it is critical

to attract his attention to the automated changes

caused by Reef’s incremental reverse-engineering

process. Differences between two versions of a

UML diagram can be highlighted with appropri-

ate use of color and line styles (see Figure 8), but

the technique does not scale to longer series of

diagrams. Since consistent use of Reef may pro-

duce as much as one new diagram version for

each source repository commit—perhaps one per

day!—the tool could benefit from a different ap-

proach.

Evolution Animation

Figure 8. Stylistic UML diff [OWK03]

My idea is to put a user-selectable subset of a diagram’s versions on a timeline, labelled

by their timestamps or source code version numbers (if available). Half way between

each consecutive pair of diagrams, there is an intermediate pair wise difference diagram

that uses stylistic conventions to indicate modifications (e.g., yellow highlights for new

elements in Figure 6). The transitions between all the diagrams on the timeline are ani-

mated; elements move, change styles and fade in and out to compose an intermediate

diagram, and then again to reach a stamped checkpoint. The user can control which

diagrams are shown on the timeline (requesting additional versions from the server as

necessary), and can play the animation back and forth, or scrub through it manually.

Animation is often used to help users follow state changes in an application. For Reef, I

hope that animating design diagram transitions will allow users to intuitively perceive

patterns of change in the system that are impossible to identify algorithmically and that

would get lost in the noise of a purely stylistic comparison. Nonetheless, this is an ex-

perimental feature that will need to be tested and refined in real-world conditions, with

no guarantee of success.

 37

4. Conclusions
This section presents my initial research plan and the results I expect to obtain over the

course of the project.

4.1. Research Plan
The research plan is straightforward (time estimates in parenthesis):

1. Feasibility study and initial literature survey (completed).

2. End-to-end proof of concept (3 months).

3. Tool development: static extractor and diagrams (5 months).

4. Tool development: dynamic extractor and diagrams (5 months).

5. Empirical and analytical evaluation (8 months).

The end-to-end proof of concept will implement the high-risk base framework of the

tool to demonstrate a full cycle as described in (U1) and (U2). When the static portion

of the tool is completed (at the end of step 3), I intend to release it to a wider audience to

gather initial feedback while I work on the dynamic parts. Evaluation of the tool and

testing of selected hypotheses is scheduled for the end of the project, and takes into ac-

count the time necessary to set up empirical studies.

4.2. Expected Contributions
The Reef project is rife with opportunities to significantly advance the state of the art

[MJ+00] in a number of areas. I expect to:

1. Provide evidence towards some of the hypotheses (H1) through (H6) and (H9)

via both controlled and natural human experiments, the latter to avoid the Haw-

thorne effect [May46] on performance studies and attempt to increase their ex-

ternal validity.

2. Introduce new approaches to diagram editor user interfaces: a focus on refine-

ment rather than wholesale creation, evolution animation, and action amplifica-

tion.

 38

3. Innovate in the fields of full and incremental off-line diagram layout using heu-

ristic global optimization techniques.

4. Discover patterns and document best practices for building complex SVG and

ECMAScript (3rd edition) applications, and potentially codify my findings in a

framework.

5. Improve reverse engineering performance by better integrating static and dy-

namic methods and enhancing origin analysis algorithms.

6. Experiment with XML databases and evaluate their usefulness as fact stores for

software modeling projects.

I also hope that the Reef tool itself will transcend its genesis as a research vehicle and

become an important component of developers’ toolkits world-wide.

 39

Bibliography
All references to W3C documents list the URI of the “latest version”, since the URI is

shorter and the most recent revision of a recommendation is likely to be of more interest

than the exact one in effect at the time of writing of this thesis. However, should you

wish to see this older version, you can follow the link from the current document to the

older one identified by the publication date given in the reference.

All references to OMG documents list the version 1.x specifications. Versions 2.0 of the

MOF, UML and XMI are expected to be completed soon, but were not yet released at

the time of this writing. Nonetheless, I intend to use the version 2.0 specifications for

this project.

[AC+01] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël Guéhéneuc, Narendra Jussien.
Instantiating and Detecting Design Patterns. In Proceedings of the 16th International
Conference on Automated Software Engineering, p. 166, November 2001.

[AFC98] G. Antoniol, R. Fiutem, L. Cristoforetti. Design Pattern Recovery in Object-Oriented
Software. In Proceedings of the 6th International Workshop on Program
Comprehension, p. 153, June 1998.

[Amb03a] Scott W. Ambler. The Elements of UML Style. Cambridge University Press, 2003.
ISBN 0521525470

[Amb03b] Scott W. Ambler. Agile Model Driven Development Is Good Enough. IEEE Software,
volume 20, issue 5, pp. 71-73, September/October 2003. doi:10.1109/MS.2003.1231156

[AS03] Ritu Agarwal, Atish P. Sinha. Object-oriented Modeling with UML: A Study of
Developers' Perceptions. Communications of the ACM, volume 46, issue 9,
pp. 248-256, September 2003. doi:10.1145/903893.903944

[ASB99] Serge Abiteboul, Dan Suciu, Peter Buneman. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, October 1999. ISBN
155860622X

[BB+03] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael Kay,
Jonathan Robie, Jérôme Siméon, eds. XML Path Language (XPath) 2.0. W3C
Working Draft, November 2003. http://www.w3.org/TR/xpath20/

[BC+03] Scott Boag, Don Chamberlin, Mary Fernández, Daniela Florescu, Jonathan Robie,
Jérôme Siméon, eds. XQuery 1.0: An XML Query Language. W3C Working Draft,
November 2003. http://www.w3.org/TR/xquery/

[Bed00] Benjamin B. Bederson. Fisheye Menus. In Proceedings of the 13th Symposium on
User Interface Software and Technology, pp. 217-225, November 2000.
doi:10.1145/354401.354782

 40

http://www.w3.org/TR/xpath20/

[Bel04a] Abhijit Belapurkar. Use AOP to maintain legacy Java applications. IBM
developerWorks, March 2004. http://www-106.ibm.com/developerworks/library/j-
aopsc2.html?ca=drs-t511

[Bel04b] Alex E. Bell. Death by UML Fever. ACM Queue, volume 2, number 1, March 2004.
doi:10.1145/984458.984495

[BHL99] Tim Bray, Dave Hollander, Andrew Layman, eds. Namespaces in XML. W3C
Recommendation, January 1999. http://www.w3.org/TR/REC-xml-names/

[BJ+03] Robert Balzer, Jens-Holger Jahnke, Marin Litoiu, Hausi A. Müller, Dennis B. Smith,
Margaret-Anne Storey, Scott R. Tilley, Kenny Wong, Anke Weber. 3rd International
Workshop on Adoption-Centric Software Engineering, June 2003.

[Bla00] Steven Black. Documentation Timing. FoxPro Wiki, August 2000.
http://fox.wikis.com/wc.dll?Wiki~DocumentationTiming~SoftwareEng

[Bou04] Ronal Bourret. XML Database Products. May 2004.
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

[BPS00] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, eds. Extensible Markup
Language (XML) 1.0, 3rd ed. W3C Recommendation, February 2004.
http://www.w3.org/TR/REC-xml

[CC+03] James Chisan, Jeff Cockburn, Reid Garner, Azarin Jazayeri, Piotr Kaminski, Jesse
Wesson. Video Bench, Final Report. Project report for CSc 586a, University of
Victoria, April 2003.

[Cor89] Thomas A. Corbi. Program Understanding: Challenge for the 1990s. IBM Systems
Journal, volume 28, number 2, pp. 294-306, 1989.

[Cor95] Gordon V. Cormack. A Calculus for Concurrent Update. University of Waterloo,
Research Report CS-95-06, 1995.

[CTM03] Stuart M. Charters, Nigel Thomas and Malcolm Munro. The end of the line for
Software Visualisation? In Proceedings of the 2nd Workshop on Visualizing Software
for Analysis and Understanding, September 2003.

[DDL99] Serge Demeyer, Stéphane Ducasse, Michele Lanza. A Hybrid Reverse Engineering
Approach Combining Metrics and Program Visualisation. In Proceedings of the 6th
Working Conference on Reverse Engineering, pp. 175-186, October 1999.

[DH+03] Jonathan Davies, Nick Huismans, Rory Slaney, Sian Whiting, Matthew Webster. An
Aspect Oriented Performance Analysis Environment. Practitioners’ Report from the
International Conference on Aspect-Oriented Software Development, March 2003.

[DH96] Ron Davidson, David Harel. Drawing Graphs Nicely Using Simulated Annealing.
ACM Transactions on Graphics, volume 15, issue 4, pp. 301-331, October 1996.
doi:10.1145/234535.234538

[Dug99] Dominic Duggan. Modular type-based reverse engineering of parameterized types in Java
code. In Proceedings of the 14th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages and Applications, pp. 97-113, November 1999.
doi:10.1145/320384.320393

 41

http://doi.acm.org/10.1145/984458.984495
http://www.w3.org/TR/REC-xml-names/
http://fox.wikis.com/wc.dll?Wiki~DocumentationTiming~SoftwareEng
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

[DV02] Péter Domokos, Dániel Varró. An Open Visualization Framework for Metamodel-Based
Modeling Languages. In Proceedings of the International Workshop on Graph-Based
Tools (GraBaTs 2002), pp. 78-87, October 2002.

[EC+99] ECMA. ECMAScript Language Specification, 3rd edition. Standard ECMA-262,
December 1999.

[EG03] Holger Eichelberger, Jurgen Wolff von Gudenberg. UML Class Diagrams—State of
the Art in Layout Techniques. In Proceedings of the 2nd Workshop on Visualizing
Softare for Understanding and Analysis, September 2003.

[Eic02a] Holger Eichelberger. Aesthetics of Class Diagrams. In Proceedings of the 1st
Workshop on Visualizing Software for Understanding and Analysis, pp. 23-31, June
2002. doi:10.1109/VISSOF.2002.1019791

[Eic02b] Holger Eichelberger. Evaluation-Report on the Layout Facilities of UML Tools.
Technical Report number 298, University of Würzburg, July 2002.

[Eic03] Holger Eichelberger. Nice Class Diagrams Admit Good Design? In Proceedings of the
2003 ACM Symposium on Software Visualization, p. 159, June 2003.
doi:10.1145/774833.774857

[EKS03a] Markus Eiglsperger, Michael Kaufmann, Martin Siebenhaller. A topology-shape-
metrics approach for the automatic layout of UML class diagrams. In Proceedings of the
Symposium on Software Visualization, p. 189, June 2003. doi:10.1145/774833.774860

[EKS03b] Thomas Eisenbarth, Rainer Koschke, Daniel Simon. Locating Features in Source Code.
IEEE Transactions on Software Engineering, volume 29, number 3, pp. 210-224,
March 2003. doi:10.1109/TSE.2003.1183929

[EM96] Timo Eloranta, Erkki Mäkinen. TimGA: A Genetic Algorithm for Drawing Undirected
Graphs. Technical Report A-1996-10, University of Tampere, 1996.

[FFJ03] Jon Ferraiolo, Jun Fujisawa, Dean Jackson, eds. Scalable Vector Graphics (SVG) 1.1
Specification. W3C Recommendation, January 2003. http://www.w3.org/TR/SVG11/

[Fow00] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
2000. ISBN 0201485672

[Fow04] Martin Fowler. UML Distilled, Third Edition. Addison-Wesley, 2004. ISBN
0321193687

[FowA] Martin Fowler. UmlAsSketch. Bliki entry, undated.
http://www.martinfowler.com/bliki/UmlAsSketch.html

[FPG03] Michael Fischer, Martin Pinzger, Harald Gall. Populating a Release History Database
from Version Control and Bug Tracking Systems. In Proceedings of the International
Conference on Software Maintenance, pp. 23-32, September 2003.

[GA03] Yann-Gaël Guéhéneuc, Hervé Albin-Amiot. A Pragmatic Study of Binary Class
Relationships. In Proceedings of the 18th Conference on Automated Software
Engineering, September 2003. doi:10.1109/ASE.2003.1240320

 42

http://dx.doi.org/10.1109/TSE.2003.1183929
http://www.w3.org/TR/SVG11/
http://www.martinfowler.com/bliki/UmlAsSketch.html
http://dx.doi.org/10.1109/ASE.2003.1240320

[GDJ02] Yann-Gaël Guéhéneuc, Rémi Douence, Narendra Jussien. No Java without Caffeine.
In Proceedings of the 17th IEEE International Conference on Automated Software
Engineering, pp. 117-126, 2002. doi:10.1109/ASE.2002.1115000

[Ger04] Daniel M. German. Mining CVS Repositories, the softChange Experience. In
Proceedings of the International Workshop on Mining Software Repositories, May
2004.

[GJ+03] Carsten Gutwenger, Michael Jünger, Karsten Klein, Joachim Kupke, Sebastian
Leipert, Petra Mutzel. A New Approach for Visualizing UML Class Diagrams. In
Proceedings of the 2003 ACM Symposium on Software Visualization, pp. 179-188,
June 2003. doi:10.1145/774833.774859

[Gre04] Roedy Green. How To Write Unmaintainable Code. Last updated June 2004.
http://mindprod.com/unmain.html

[GT02] Michael Godfrey, Qiang Tu. Tracking Structural Evolution using Origin Analysis. In
Proceedings of the 2002 International Workshop on Principles of Software Evolution,
May 2002. doi:10.1145/512035.512062

[HL03a] Abdelwahab Hamou-Lhadj, Timothy C. Lethbridge. Techniques for Reducing the
Complexity of Object-Oriented Execution Traces. In Proceedings of the 2nd Annual
Designfest on Visualizing Software for Understanding and Analysis, pp. 35-40,
October 2003.

[HL03b] Xiaodi Huang, Wei Lai. Force-Transfer: A New Approach to Removing Overlapping
Nodes in Graph Layout. In Proceedings of the 26th Australasian Computer Science
Conference on Research and Practice in Information Technology, volume 16, pp.
349-358, 2003.

[HLN04] Jouni Huotari, Kalle Lyytinen, Marketta Niemelä. Improving graphical information
system model use with elision and connecting lines. ACM Transactions on Computer-
Human Interaction, Volume 11, Issue 1, pp. 26-58, March 2004.
doi:10.1145/972648.972650

[HM+02] Trevor Hansen, Kim Marriott, Bernd Meyer, Peter J. Stuckey. Flexible Graph Layout
for the Web. Journal of Visual Languages and Computing, volume 13, issue 1,
pp. 35-60, 2002. doi:10.1006/jvlc.2001.0226

[Hol02] Allen Holub. When it comes to good OO design, keep it simple. JavaWorld, January
2002. http://www.javaworld.com/javaworld/jw-01-2002/jw-0111-ootools.html

[Hor03] Waldemar Horwat. ECMAScript 4 Netscape Proposal. June 2003.
http://www.mozilla.org/js/language/es4/

[Hya01] David Hyatt. XBL – XML Binding Language. W3C Note, February 2001.
http://www.w3.org/TR/xbl/

[Jac04] Dean Jackson, ed. Scalable Vector Graphics (SVG) 1.2. W3C Working Draft, May 2004.
http://www.w3.org/TR/SVG12/

[JM03] Timothy Jacobs, Benjamin Musial. Interactive Visual Debugging with UML. In
Proceedings of the 2003 ACM Symposium on Software Visualization, pp. 115-122,
June 2003. doi:10.1145/774833.774850

 43

http://mindprod.com/unmain.html
http://dx.doi.org/10.1145/512035.512062
http://dx.doi.org/10.1006/jvlc.2001.0226
http://www.javaworld.com/javaworld/jw-01-2002/jw-0111-ootools.html
http://www.mozilla.org/js/language/es4/
http://www.w3.org/TR/SVG12/

[Joh03] Philip M. Johnson. Results from Qualitative Evaluation of Hackystat-UH. Technical
Report number CSDL-03-13, Department of Information and Computer Sciences,
University of Hawaii, December 2003.

[Kam02a] Piotr Kaminski. Integrating Information on the Semantic Web Using Partially Ordered
Multi Hypersets. MSc Thesis, University of Victoria, September 2002.

[Kam02b] Piotr Kaminski. Las Vegas Go. CSc 581a project report, December 2002.

[KC04] Graham Klyne, Jeremy J. Carroll, eds. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation, February 2004.
http://www.w3.org/TR/rdf-concepts/

[Kem99] Eva Kemps. Effects of Complexity on Visuo-spatial Working Memory. European
Journal of Cognitive Psychology, volume 11, number 3, pp. 335-356, September 1999.

[KG01] Ralf Kollmann, Martin Gogolla. Capturing Dynamic Program Behaviour with UML
Collaboration Diagrams. In Proceedings of the 5th European Conference on Software
Maintenance and Reegineering, pp. 58-67, March 2001. doi:10.1109/CSMR.2001.914969

[KG02] Ralf Kollmann, Martin Gogolla. Metric-Based Selective Representations of UML
Diagrams. In Proceedings of the 6th European Conference on Software Maintenance
and Reengineering, pp. 89-98, March 2002. doi:10.1109/CSMR.2002.995793

[KG04] Cory Kapser, Michael W. Godfrey. Aiding Comprehension of Cloning Through
Categorization. Submitted to International Workshop on Software Evolution,
September 2004.

[KGV83] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Annealing.
Science, volume 220, number 4598, May 1983.

[KLW95] Michael Kifer, Georg Lausen, James Wu. Logical Foundations of Object-Oriented and
Frame-Based Languages. Journal of the ACM, volume 42, pp. 741-783, 1995.
doi:10.1145/210332.210335

[KS+02] Ralf Kollmann, Petri Selonen, Eleni Stroulia, Tarja Systä, Albert Zündorf. A Study on
the Current State of the Art in Tool-Supported UML-Based Static Reverse Engineering. In
Proceedings of the 9th Working Conference on Reverse Engineering, p. 22,
November 2002.

[KWM02] Holger M. Kienle, Anke Weber, Hausi A. Müller. Leveraging SVG in the Rigi Reverse
Engineering Tool. In Proceedings of the SVG Open, July 2002.

[May46] Elton Mayo. The Human Problems of an Industrial Civilization.

[MC+02] Sarah Matzko, Peter J. Clarke, Tanton H. Gibbs, Brian A. Malloy, James F. Power,
Rosemary Monahan. Reveal: A Tool to Reverse Engineer Class Diagrams. In
Proceedings of the 40th International Conference on Tools Pacific: Objects for
Internet, Mobile and Embedded Applications, volume 10, pp. 13-21, February 2002.

[MJ+00] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey, Scott R.
Tilley, Kenny Wong. Reverse Engineering: A Roadmap. In The Future of Software
Engineering (Anthony Finkelstein, ed.), ACM Press, 2000. ISBN 1581132530

 44

http://www.w3.org/TR/rdf-concepts/
http://dx.doi.org/10.1145/210332.210335

[MM03] Neil MacKinnon, Steve Murphy. Designing UML Diagrams for Technical
Documentation. In Proceedings of the 21st Annual International Conference on
Documentation, pp. 105-112, October 2003. doi:10.1145/944868.944891

[MS03] Mark S. Miller, Jonathan S. Shapiro. Paradigm Regained: Abstraction Mechanisms for
Access Control. In Proceedings of the 8th Asian Computing Science Conference,
December 2003.

[MV95] Anneliese von Mayrhauser, A. Marie Vans. Program Comprehension During Software
Maintenance and Evolution. IEEE Computer, volume 28, issue 8, pp. 44-55, August
1995. doi:10.1109/2.402076

[NL03] Colin J. Neill, Phillip A. Laplante. Requirements Engineering: The State of the Practice.
IEEE Software, volume 20, number 6, pp. 40-45, November/December 2003.
doi:10.1109/MS.2003.1241365

[OA+04] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, Matthias
Zenger. An Overview of the Scala Programming Language. Draft, June 2004.

[OMG02a] Object Management Group. Meta Object Facility (MOF) Specification. Version 1.4,
April 2002.

[OMG02b] Object Management Group. XML Metadata Interchange (XMI) Specification. Version
1.2, January 2002.

[OMG03] Object Management Group. OMG Unified Modeling Language Specification. Version
1.5, March 2003.

[OWK03] Dirk Ohst, Michael Welle, Udo Kelter. Differences Between Versions of UML Diagrams.
In Proceedings of the 9th European Software Engineering Conference, pp. 227-236,
September 2003. doi:10.1145/940071.940102

[PAC00] Helen C. Purchase, Jo-Anne Allder, David A. Carrington. User Preference of Graph
Layout Aesthetics: A UML Study. In Proceedings of the 8th International Symposium
on Graph Drawing, pp. 5-18, September 2000.

[Pas04] Fabian Pascal. If You Liked SQL, You’ll Love XQuery. DBAzine.com, June 2004.
http://www.dbazine.com/pascal19.shtml

[PC+01] Helen C. Purchase, Linda Colpoys, Matthew McGill, David Carrington, Carol
Britton. UML Class Diagram Syntax: An Empirical Study of Comprehension. In
Proceedings of the Australian Symposium on Information Visualisation, volume 9,
pp. 113-120, 2001.

[PC+02] Helen C. Purchase, Linda Colpoys, Matthew McGill, David Carrington. UML
Collaboration Diagram Syntax: An Empirical Study of Comprehension. In Proceedings of
the 1st Workshop on Visualizing Software for Understanding and Analysis,
pp. 13-22, June 2002. doi:10.1109/VISSOF.2002.1019790

[PM+01] Helen C. Purchase, Matthew McGill, Linda Colpoys, David Carrington. Graph
Drawing Aesthetics and the Comprehension of UML Class Diagrams: An Empirical Study.
In Proceedings of the Australian Symposium on Information Visualisation, volume
9, pp. 129-137, 2001.

 45

http://dx.doi.org/10.1109/MS.2003.1241365
http://www.dbazine.com/pascal19.shtml
http://dx.doi.org/10.1109/VISSOF.2002.1019790

[Pur00] Helen C. Purchase. Effective information visualisation: a study of graph drawing
aesthetics and algorithms. Interacting with Computers, volume 12, issue 2,
pp. 147-162, December 2000. doi:10.1016/S0953-5438(00)00032-1

[Qui03] Antoine Quint. SVG and XForms: Rendering Custom Content. IBM developerWorks,
November 2003. http://www-106.ibm.com/developerworks/xml/library/x-svgxf2/

[RRK99] Daniel H. Robinson, Sheri L. Robinson, Andrew D. Katayama. When Words Are
Represented in Memory Like Pictures: Evidence for Spatial Encoding of Study Materials.
Contemporary Educational Psychology, volume 24, issue 1, pp. 38-54, January 1999.
doi:10.1006/ceps.1998.0979

[Rug94] Spencer Rugaber. White Paper on Reverse Engineering. Unpublished, 1994.

[SD+03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, Andrew P. Black. Traits:
Composable Units of Behaviour. In Proceedings of the European Conference on
Object-Oriented Programming, July 2003.

[SE98] Chengzheng Sun, Clarence Ellis. Operational transformation in real-time group editors:
issues, algorithms, and achievements. In Proceedings of the Conference on Computer
Supported Cooperative Work, pp. 59-68, November 1998. doi:10.1145/289444.289469

[Sha03] Mary Shaw. Writing Good Software Engineering Research Papers. In Proceedings of
the 25th International Conference on Software Engineering, pp. 726-736, May 2003.

[Shi98] Clay Shirky. View Source... Lessons from the Web's massively parallel development.
April 1998. http://www.shirky.com/writings/view_source.html

[Sho04] Keith Short. UML and DSLs Again. April 2004.
http://blogs.msdn.com/keith_short/archive/2004/04/16/114960.aspx

[Spi03] Diomidis Spinellis. On the Declarative Specification of Models. IEEE Software, volume
20, number 2, pp. 94-96, March/April 2003. doi:10.1109/MS.2003.1184181

[Sta84] T. Standish. An essay on software reuse. IEEE Transactions on Software Engineering,
volume 10, number 5, pp. 494-497, September 1984.

[Tar00] Tarja Systä. Static and Dynamic Reverse Engineering Techniques for Java Systems.
Academic Dissertation, University of Tampere, Finland, May 2000.

[TH03] Scott Tilley, Shihong Huang. A Qualitative Assessment of the Efficacy of UML
Diagrams as a Form of Graphical Documentation in Aiding Program Understanding. In
Proceedings of the 21st Annual International Conference on Documentation,
pp. 184-191, October 2003. doi:10.1145/944868.944908

[Try97] Eirik Tryggeseth. Report from an Experiment: Impact of Documentation on Maintenance.
Journal of Empirical Software Engineering, volume 2, number 2, pp. 201-207, 1997.
doi:10.1023/A:1009778023863

[Tuf97] Edward R. Tufte. Visual explanations : images and quantities, evidence and narrative.
Graphics Press, 1997. ISBN 0961392126

[Vis97] Giuseppe Visaggio. Relationships between Documentation and Maintenance Activities.
In Proceedings of the 5th International Workshop on Program Comprehension, p. 4,
May 1997.

 46

http://www-106.ibm.com/developerworks/xml/library/x-svgxf2/
http://www.shirky.com/writings/view_source.html
http://blogs.msdn.com/keith_short/archive/2004/04/16/114960.aspx
http://dx.doi.org/10.1109/MS.2003.1184181
http://dx.doi.org/10.1023/A%3A1009778023863

[Wil98] Chris Wilson, ed. HTML Components: Componentizing Web Applications. W3C Note,
October 1998. http://www.w3.org/TR/NOTE-HTMLComponents

[Win01] Andreas Winter. Exchanging Graphs with GXL. In Proceedings of 9th International
Symposium on Graph Drawing, Vienna, September 2001.

[Won98] Kenny Wong. Rigi User’s Manual, Version 5.4.4. University of Victoria, June 1998.
http://ftp.rigi.csc.uvic.ca/pub/rigi/doc/rigi-5.4.4-manual.pdf

[Zei02] Alan Zeichick. Modeling Usage Low; Developers Confused About UML 2.0, MDA. SD
Times, July 15, 2002. http://www.sdtimes.com/news/058/story3.htm

[ZG03] Lijie Zou, Michael W. Godfrey. Detecting Merging and Splitting using Origin Analysis.
In Proceedings of the Working Conference on Reverse Engineering, November 2003.

[ZW04] Thomas Zimmermann, Peter Weissgerber. Preprocessing CVS Data for Fine-Grained
Analysis. In Proceedings of the International Workshop on Mining Software
Repositories, May 2004.

 47

http://www.w3.org/TR/NOTE-HTMLComponents
http://www.sdtimes.com/news/058/story3.htm

 48

Appendix A. Sample Edit Action List
The following table presents an initial list of actions that can be undertaken on elements

of a UML class diagram, and potential amplifications that can be applied to them. For

amplifications that can be applied with various scopes, the suffix “in D/P/O” means

“in the current diagram, in all diagrams in the project, in all diagrams in the organiza-

tion”. The user would select the desired scope when amplifying the action. Note that if

a target fulfills multiple criteria, all the corresponding amplifiers would be applicable.

Target Action Amplifiers
show/hide visibility, type,
multiplicity

all attributes in class, in
D/P/O

delete all attributes in class; all at-
tributes with this name in
diagram; all attributes with
this type in D/P/O

attribute

change to association all attributes with this name
in diagram; all attributes
with this type in D/P/O

delete all operations in class; all
operations with this name
in class, in D/P/O; all op-
erations with this signature
in D/P/O

show/hide visibility, types,
parameter names

all operations in class, in
D/P/O

operation

treat as accessor (convert to
attribute, r/o or w/o)

all operations with this
name in D/P/O; all opera-
tions with this signature in
D/P/O

two operations treat as accessors (convert
to r/w attribute)

all operations with this
name in D/P/O; all opera-
tions with this signature in
D/P/O

association delete all associations of this kind
(e.g. generalization, imple-
mentation, relation, de-
pendency) in D; all associa-
tions with this name in
D/P/O; all associations

 49

originating from this ele-
ment in D/P/O; all associa-
tions targeting this element
in D/P/O

navigable association change to attribute(s)
association name delete all association names in

D/P/O; all association
names on associations that
have at least one role name
in D/P/O

association endpoint toggle navigability
delete all roles in D/P/O; all roles

with this name in D/P/O;
all roles for associations
with this name in D/P/O

association endpoint role

show/hide visibility all roles in D/P/O
association endpoint mul-
tiplicity

delete all multiplicities in D/P/O

composition or aggregation
endpoint multiplicity

delete all composition or aggrega-
tion multiplicities in
D/P/O

two associations between a
pair of elements, going in
opposite directions

merge

bi-directional association split all bidirectional associations
in D/P/O

stereotyped association delete all associations with this
stereotype in D/P/O

delete
(all associations with the
class are deleted as well)

in project, in organization
(?); all classes with same
prefix/suffix in D/P/O
(when multiple deleted
classes have matching
names)

toggle datatype stereotype
(changes associations of
this type to attributes and
vice-versa)

in project, in organization

class

mark as collection
(class disappears, associa-
tions to it are retargeted at
“unknown” and gain high

(automatically applies to
organization)

 50

multiplicity)
mark as map (automatically applies to

organization)
interface toggle lollipop notation this interface in P/O; all in-

terfaces in D/P/O
nested element
(package in package, class
in package, class in class)

pull inside/push outside all elements in same con-
tainer; this element in pro-
ject, organization; all ele-
ments of this kind in pro-
ject, organization

take all inside this element in project, or-
ganization; all elements of
this kind in project, organi-
zation

container element (package
or class with nested ele-
ments)

push all outside this element in project, or-
ganization; all elements of
this kind in project, organi-
zation

stereotype show/hide this stereotype in D/P/O;
all stereotypes in D/P/O

layout from scratch
relayout connectors
revert local changes

diagram

submit: update (execute re-
quested server-side actions
and send again), accept
(with changes), reject (po-
tentially useful, but don’t
feel like fixing), destroy (not
useful, don’t draw this any
more)

two or more classes and/or
packages

split into a separate dia-
gram

any element show affecting actions (al-
low “deleted” parts to be
recovered, or exceptions to
global rules to be created)

any number of elements request layout from scratch
(these elements and their
connectors only)

	Table of Contents
	Introduction
	Documentation
	
	Source Code Comments
	Design Documents
	Reverse-Engineered Diagrams

	Unified Modeling Language
	Costs and Benefits

	Hypotheses
	Wonders of UML (H1-H3)
	Travails of UML (H4-H6)
	Idiosyncrasies of Software Engineering (H7-H9)

	Tool Specification
	Requirements
	Primary Use Cases (U1-U2)
	Secondary Use Cases (U3-U6)

	Architecture
	Back-end Design
	Data Model
	Data Flow
	Platform
	Features
	Source Code Retrieval
	Fact Extraction and Elaboration
	Diagram Layout

	Front-end Design
	Platform
	Flash
	Applets
	SVG
	Verdict

	Data Management and Communication
	User Interface
	General Principles
	Action Amplification
	Evolution Animation

	Conclusions
	Research Plan
	Expected Contributions

	Bibliography

