

Integrating Information on the Semantic Web

Using Partially Ordered Multi Hypersets

by

Piotr Kaminski
B. Math., University of Waterloo, 1997

A Thesis Submitted in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

We accept this thesis as conforming
to the required standard

Dr. R. N. Horspool, Supervisor (Department of Computer Science)

Dr. H. A. Müller, Supervisor (Department of Computer Science)

Dr. M. Storey, Department Member (Department of Computer Science)

Dr. I. Traoré, Outside Member (Dept. of Electrical & Computer Engineering)

© Piotr Kaminski, 2002
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part,

by photocopy or other means, without the permission of the author.

 ii

Supervisors: Dr. R. N. Horspool and Dr. H. A. Müller

ABSTRACT

The semantic web is supposed to be a global, machine-readable information re-

pository, but there is no agreement on a single common information metamodel.

To prevent the fragmentation of this nascent semantic web, this thesis introduces

the expressive and flexible Braque metamodel. Based on non-well-founded par-

tially ordered multisets (hyper pomsets), augment with a powerful reflection

mechanism, the metamodel supports the automated, lossless, semantically trans-

parent integration of relationship-based metamodels. Complete mappings to

Braque from the Extensible Markup Language (XML), the Resource Description

Framework (RDF), and the Topic Maps standard are provided. The mappings

place information at the same semantic level, allowing uniform navigation and

queries without regard for the original model boundaries.

Examiners:

Dr. R. N. Horspool, Supervisor (Department of Computer Science)

Dr. H. A. Müller, Supervisor (Department of Computer Science)

Dr. M. Storey, Department Member (Department of Computer Science)

Dr. I. Traoré, Outside Member (Dept. of Electrical & Computer Engineering)

 iii

Table of Contents
Abstract .. ii

Table of Contents .. iii

List of Tables .. vi

List of Equations ...vii

List of Figures...viii

Dedication ... xi

1. Introduction ... 1
1.1. The Status Quo .. 1
1.2. The Semantic Web .. 2
1.3. The Case for Integration .. 3
1.4. Looking Forward .. 3

2. Background.. 5
2.1. Terminology.. 5

2.1.1. Data, Information, Knowledge and Wisdom ... 5
2.1.2. Reification ... 7
2.1.3. Uniform Resource Identifiers ... 8
2.1.4. Ontologies ... 10

2.2. Classifying Information ... 11
2.2.1. Classification of Semistructured Data ... 12
2.2.2. Metamodel Stratification ... 14

2.3. Metamodel Semantic Layers .. 16
2.3.1. IMI Reference Model ... 16
2.3.2. Object Layer Features ... 18

2.4. Mapping between Metamodels.. 20
2.4.1. Syntax-to-Syntax Mapping ... 20
2.4.2. Object-to-Object Mapping .. 21
2.4.3. Object-to-Semantic Lift ... 22
2.4.4. Semantic-to-Semantic Mapping... 24
2.4.5. Mapping Summary... 25

3. The Braque Metamodel.. 26
3.1. Goals and Principles .. 26
3.2. Primitives... 28

3.2.1. Atoms... 28
3.2.2. Hypersets .. 29
3.2.3. Identity .. 31
3.2.4. Ordering and Duplicates ... 33

 iv

3.2.5. Nest Size ... 35
3.2.6. Notational Sugar .. 35

3.3. Naïve Upper Ontology... 37
3.3.1. Types ... 38
3.3.2. Relations.. 39
3.3.3. Membership Reification... 41
3.3.4. Roles .. 42
3.3.5. Subtypes.. 46
3.3.6. Names.. 47
3.3.7. Identifiers .. 50

3.4. Inferences and Validation... 52
3.4.1. Relation Hints ... 53
3.4.2. Relation Constraints .. 55
3.4.3. Metatype Compatibility Problem.. 57
3.4.4. Metatype Constraint .. 59
3.4.5. Constraining Naïve Metatypes ... 61

3.5. Issues of Logic ... 62

4. Integration ... 64
4.1. Extensible Markup Language ... 64

4.1.1. Basic Structure of XML Documents ... 65
4.1.2. XML Names ... 67
4.1.3. XML Namespaces ... 68

4.2. Resource Description Framework ... 69
4.2.1. Basic Structure of RDF .. 70
4.2.2. RDF Types, Properties and Values .. 73
4.2.3. RDFS Classes, Hierarchies and Indicators ... 75
4.2.4. Containers ... 77
4.2.5. Containers Embedding .. 80
4.2.6. Statements, Statings and Reification.. 82

4.3. Topic Maps.. 84
4.3.1. Basic Structure of Topic Maps ... 85
4.3.2. Subject Identification .. 87
4.3.3. Class Ontology.. 90
4.3.4. Scopes ... 92
4.3.5. Names in Topic Maps .. 98
4.3.6. Occurrences .. 99

4.4. Integration Example.. 101
4.4.1. Course List in RDF ... 102
4.4.2. Job Offerings in XML ... 105
4.4.3. Coverage Opinions as Topic Maps .. 108
4.4.4. Integrated Model in Braque ... 111

 v

5. Related Work ... 114
5.1. The Integrated Metamodels... 114

5.1.1. Extensible Markup Language ... 114
5.1.2. Resource Description Framework.. 115
5.1.3. Topic Maps.. 117

5.2. Merging RDF and XML .. 118
5.2.1. Bridging the Gap .. 118
5.2.2. OrdLab Graphs ... 120
5.2.3. The Yin/Yang Web... 121

5.3. Merging RDF and Topic Maps.. 124
5.3.1. The Early Lifts .. 125
5.3.2. Two Semantic Mappings... 126
5.3.3. Occurrences as Statements.. 127
5.3.4. The Syntactic Web... 128

5.4. Other Metamodels ... 129
5.4.1. Directed Binary Graphs ... 129
5.4.2. Advanced Graphs ... 130
5.4.3. Odds and Ends ... 131

6. Conclusions .. 133
6.1. Evaluation and Contributions... 133

6.1.1. Deep Reflection .. 133
6.1.2. Expressive Power ... 135
6.1.3. Elegance .. 136
6.1.4. Integration .. 137

6.2. Future Work.. 138
6.2.1. Theory ... 138
6.2.2. Integration .. 140
6.2.3. Implementation.. 141
6.2.4. Follow-On Work ... 142

References ... 144

A. Braque Metamodel Reference... 153

B. Integration Metamodels Reference.. 159

C. Research Notes ... 163
C.1. Braque Background ... 163
C.2. Subclass or Instance? ... 165
C.3. Indicators and Representation .. 167
C.4. Punning on Classes ... 169

 vi

List of Tables
Table 2-1. UML’s metamodel strata... 14
Table 3-1. Kinds of nests... 34
Table 4-1. Prefix substitutions for RDF course list .. 102

 vii

List of Equations
Equation 3-1. Binary relation formula shorthand .. 53
Equation 3-2. Binary relations consist of pairs... 55
Equation 3-3. Transitive relation rule .. 55
Equation 3-4. Reflexive relations rule ... 55
Equation 3-5. Functions have only one value for each key 56
Equation 3-6. Inverse of a binary relation.. 56
Equation 3-7. Symmetric relations rule... 56
Equation 3-8. Relating roles and indices... 56
Equation 3-9. Rules related to nest expansion .. 57
Equation 3-10. Definition of metatypes .. 57
Equation 3-11. Extension is transitive and reflexive ... 59
Equation 3-12. The Braque metatype constraint... 60
Equation 3-13. Intransitive relation extending a transitive one 62
Equation 3-14. Extension compatibility symmetry hypothesis 62
Equation 4-1. Aggregation of XML elements and attributes 67
Equation 4-2. XML names uniqueness constraint.. 69
Equation 4-3. Strong RDF type mapping constraint ... 75
Equation 4-4. All RDFS classes extend Resource .. 76
Equation 4-5. Translation of RDF comments and labels .. 77
Equation 4-6. RDF Seq embedding constraint ... 81
Equation 4-7. RDF Alt embedding constraint ... 81
Equation 4-8. Properties contain statements ... 83
Equation 4-9. RDF reification constraint ... 84
Equation 4-10. Scope identity constraint.. 94
Equation 4-11. The unconstrained scope is the bottom of the scope lattice........ 95
Equation 4-12. Two formal interpretations of theme-based scope extension 97
Equation 4-13. XHTML identification inference.. 107

 viii

List of Figures
Figure 2-1. Data pyramid .. 6
Figure 2-2. R. Magritte’s “La Trahison des Images” (1929) 8
Figure 2-3. IMI Reference Model layers.. 17
Figure 3-1. Representation of plain and literal atoms .. 29
Figure 3-2. Two representations of sets ... 30
Figure 3-3. A recursive hyperset .. 31
Figure 3-4. M.C. Escher's “Print Gallery” (1956).. 31
Figure 3-5. Ordered members .. 34
Figure 3-6. Labelling elements to externalize their identity..................................... 36
Figure 3-7. References and scoping .. 36
Figure 3-8. Equivalent representations of membership.. 37
Figure 3-9. Binary relationship shorthand .. 37
Figure 3-10. Booleans class .. 38
Figure 3-11. Booleans is a classifier .. 39
Figure 3-12. Classifiers is an instance of itself... 39
Figure 3-13. Example of a binary relation .. 40
Figure 3-14. Typed relationship shorthand .. 40
Figure 3-15. Example of binary relationship shorthand ... 41
Figure 3-16. Example of relationships tagged with roles ... 44
Figure 3-17. Membership role-playing shorthand ... 44
Figure 3-18. Unordered binary role-playing relationship shorthand....................... 45
Figure 3-19. Example of role-playing relationships using compact notation 45
Figure 3-20. Roles played by members of Play Role by Index relators 45
Figure 3-21. The Extend relation ... 46
Figure 3-22. Extend relationship example and shorthand 46
Figure 3-23. Top of the inheritance hierarchy: Ideas, Nests and Classifiers 47
Figure 3-24. Relations inheritance hierarchy ... 47
Figure 3-25. A name with scoped representations.. 48
Figure 3-26. Simple naming example and shorthand ... 49
Figure 3-27. Naming the Denote relation ... 49
Figure 3-28. A model of the names of “A-Sitting On A Gate” 50
Figure 3-29. A hierarchy of indication relations... 51
Figure 3-30. Example of identification by URI ... 52
Figure 3-31. Example of relation hints .. 54
Figure 3-32. Example of incompatible metatypes ... 57
Figure 3-33. Example of valid cross-metatype inheritance 58
Figure 3-34. Metatypes inverting instances’ extension... 59
Figure 3-35. Expand relationship shorthand .. 61
Figure 3-36. Improved model of naïve relations ... 61

 ix

Figure 4-1. Mapping of sample XML document ... 66
Figure 4-2. Sample XML element and attribute types .. 67
Figure 4-3. Four kinds of XML names.. 68
Figure 4-4. Top level XML namespaces .. 68
Figure 4-5. Local attribute XML namespaces ... 69
Figure 4-6. XML namespaces.. 69
Figure 4-7. Sample RDF model in NTriples format.. 71
Figure 4-8. Mapping of sample RDF model .. 73
Figure 4-9. Basic RDF ontology embedding ... 74
Figure 4-10. RDFS classes embedding .. 76
Figure 4-11. RDFS properties embedding... 77
Figure 4-12. Repeated statements create an implicit collection 77
Figure 4-13. Mapping of repeated statements... 78
Figure 4-14. RDF container class hierarchy.. 78
Figure 4-15. RDF membership properties model... 79
Figure 4-16. Explicit container holds a collection .. 80
Figure 4-17. RDF containers embedding .. 80
Figure 4-18. Braque model of explicit RDF container ... 81
Figure 4-19. Sample topic map in LTM format .. 86
Figure 4-20. Mapping of topic map sample into Braque .. 87
Figure 4-21. Example of subject identifiers and indicators 89
Figure 4-22. Mapping of identifiers and indicators into Braque 90
Figure 4-23. Specifying the type of a subject using an explicit association 90
Figure 4-24. Shortcut for specifying the type of a subject 91
Figure 4-25. Specifying a generalization association .. 91
Figure 4-26. Topic Map classification and generalization embedding 92
Figure 4-27. Example of association scoping ... 93
Figure 4-28. Embedding of Topic Maps scopes ... 94
Figure 4-29. Example mapping of scopes into Braque ... 95
Figure 4-30. Sample results of two interpretations of scope extension................. 97
Figure 4-31. Assigning base and variant names to subjects 98
Figure 4-32. Mapping Topic Maps names to Braque .. 99
Figure 4-33. Sample occurrences... 100
Figure 4-34. Occurrences relation and roles .. 100
Figure 4-35. Sample mapping of occurrences into Braque.................................... 101
Figure 4-36. RDF course list fragment .. 103
Figure 4-37. Course list schema in Braque... 104
Figure 4-38. IKM course in Braque .. 104
Figure 4-39. HCI course in Braque .. 105
Figure 4-40. XHTML job offerings example .. 106
Figure 4-41. XHTML schema fragment in Braque ... 107
Figure 4-42. XHTML model fragment in Braque .. 108

 x

Figure 4-43. Coverage opinions topic map... 109
Figure 4-44. Topic map definitions in Braque .. 110
Figure 4-45. Topic map associations in Braque ... 111
Figure 4-46. Essentials of the integrated model in Braque.................................... 112
Figure 5-1. A ternary relationship in RDF ... 116
Figure A-1. Braque metamodel graphical notation primitives 153
Figure A-2. Braque metamodel graphical notation shorthands............................. 154
Figure A-3. Braque metamodel graphical notation relation hints 155
Figure A-4. Domains and basics of the naïve upper ontology............................... 156
Figure A-5. Naïve upper ontology relations.. 157
Figure A-6. Naïve upper ontology roles .. 158
Figure B-1. XML mapping ontology ... 159
Figure B-2. RDF and RDFS classes .. 160
Figure B-3. RDF and RDFS properties ... 161
Figure B-4. Topic Maps mapping ontology ... 162
Figure C-1. G. Braque’s “Still Life with Violin and Pitcher” (1909-10).................. 164
Figure C-2. Example representation of HTTP GET result 168
Figure C-3. Datatype punning in RDF ... 169
Figure C-4. Class and role punning in Topic Maps .. 170

 xi

To Kate,

for pretending to be interested.

 1

1. Introduction
Ubiquitous networking has dramatically changed the face of computing. Most

computers now participate in the global Internet and the tasks we expect them to

perform have changed accordingly. Their role in supporting human communi-

cations has grown increasingly important, to the point that it has become an ar-

guably critical part of the world’s social and economic frameworks.

1.1. The Status Quo
Email and the web are today’s most commonly used communication tools. They

share an important property: under normal circumstances, their content—be it

messages or web pages—can only be understood and acted on by humans. This

is because the information communicated through these media can only be ex-

tracted with an understanding of the language used and, increasingly on the web,

the visual arrangement of the content, including any embedded images. While

computers enable the exchange of information between humans, they serve

merely as a conduit for the data.

The Internet’s users are slowly becoming aware that this lack of “understanding”

by computers is severely limiting the network’s utility as an information resource.

Searching for information is inefficient, since web search engines can only index

data with just a rudimentary grasp of the import of a web page provided by

natural language processing routines. Different web directories organize their

listings in different ways and, with no automated way to map between the struc-

tures, finding corresponding categories in different taxonomies requires signifi-

cant effort. Collating information on one subject from multiple web pages is a

painstaking manual process, since computers are not aware that web pages may

describe individual items and that some of these items may be the same.

A number of initiatives that attempt to address the issue are under way. Even

before the web phenomenon began, some industry sectors managed to agree on

 2

common information exchange vocabularies within their limited vertical domain.

With the advent of the Extensible Markup Language (XML) [BPS00], these efforts

mushroomed into a veritable jungle of domain-specific lexicons that are success-

fully being used by specialized applications. However, because XML is nothing

but a structured data exchange syntax, each standard encodes the domain’s con-

cepts in a different way. This makes it impossible to build domain-independent

tools to integrate and process the information.

1.2. The Semantic Web
The proposed semantic web vision,1 as proselytized by Tim Berners-Lee et al.

[BHL01], is intended to provide a solution to these problems. Whereas the web

as we know it can be thought of as an ocean of pretty, linked, human-readable

data islands, and XML vocabularies provide certain archipelagos with specific

and incompatible dialects, the semantic web proposes to create a global sea of

rich machine-comprehensible information.

While not universal, the semantic web vision has many enthusiastic adherents;

what is not clear is the concrete path that would lead to the realization of the vi-

sion. The World Wide Web Consortium (W3C) is promoting the Resource De-

scription Framework (RDF). The International Standards Organizations (ISO) is

developing Topic Maps and other less well-known standards. An ever-growing

multitude of other approaches can be found, some aiming explicitly at the se-

mantic web, others unaware that they are playing in this highly contested arena.

Finally, we must not forget the silent majority that is quite happy with publish-

ing data in some specialized dialect of XML or for human eyes only: the infor-

mation trapped in their documents would make a great contribution to the se-

mantic web.

1 See [For02] for a utopian version of the vision, and [Doc01] for a dystopian account.

 3

1.3. The Case for Integration
It is my contention that no single semantic web standard is likely to gain wide

held acceptance, as each plays to a different audience, providing them the advan-

tages they seek with a minimum of extra baggage. Combining the many markup

languages into one and forcing all authors to use it is not socially viable. It may

also be technically undesirable since the additional complexity introduced would

not be acceptable for simpler applications. Even with their relatively low com-

plexity, RDF and Topic Maps are already a hard sell.

So it seems that we are back where we started, except that, instead of having in-

compatible data exchange formats, we have incompatible information exchange

formats. It would undoubtedly be valuable to be able to integrate information

from different sources [Euz02]. An integrated information base would allow uni-

form queries over information from all sources, and greatly expand the amount

of knowledge that could be inferred from the combination of models. Yet it

turns out that none of the proposals currently on the table is powerful enough to

elegantly integrate information expressed using other approaches.

1.4. Looking Forward
My contribution is an elegant conceptual metamodel called Braque. It is demon-

strably a superset of the most popular proposed semantic web metamodels and

arguably sufficiently powerful to encompass all future approaches within its

framework. I also provide a proof-of-concept implementation used to showcase

an example of information integration.

The rest of this thesis is laid out as follows:

• Chapter 2 gives background information about the semantic web research

area, explains some of the more abstruse terminology, and sets the frame-

work within which metamodel integration approaches can be evaluated.

 4

• Chapter 3 introduces the new Braque metamodel and its graphical notation,

an integration-friendly upper ontology, and some logical constraints on

model validity.

• Chapter 4 explains the XML, RDF and Topic Map standards, specifies map-

pings to the Braque metamodel, and provides a concrete example of model

integration.

• Chapter 5 explores related work, including other metamodels, mapping

and integration techniques, and compares them to Braque.

• Chapter 6 concludes this thesis by evaluating the work presented in this

thesis, summarizing my contributions, and looking at potential areas of fu-

ture research.

• Appendices A and B provide reference diagrams for Braque and the three

mappings, matching chapters 3 and 4, respectively.

• Appendix C holds assorted research notes, dealing in more detail with cer-

tain topics not directly relevant to the core focus of this thesis.

 5

2. Background
Semantic web research lies at the confluence of a number of other research

streams. It borrows from work in databases, artificial intelligence, distributed

systems, information theory and philosophy, among others. Such a heterogene-

ous ancestry can make the material hard to understand, since few people possess

expertise in all of the above areas.

This chapter clarifies the terminology and explains some of the concepts and

technologies underlying the field. It also lays out a framework for describing

and comparing semantic representation and exchange mechanisms.

2.1. Terminology
This section introduces the basic terms and concepts relevant to the semantic

web.

2.1.1. Data, Information, Knowledge and Wisdom
The terms data, information, knowledge and wisdom are closely related and of-

ten confused in the English language. We shall adapt the following definitions

commonly accepted in Artificial Intelligence; the examples are taken from

[How01].

• Data: Symbols such as numbers, characters or images that stand only for

themselves. For example, 1234567.89 is data.

• Information: Data interpreted in a context that gives it meaning, making it

into facts. For example, "Your bank balance has jumped 8087% to

$1234567.89" is information.

• Knowledge: Information together with inference rules that can be used to

derive new knowledge. For example, "Nobody owes me that much money"

is knowledge.

 6

• Wisdom: Knowledge applied to a decision-making process, resulting in ac-

tions. For example, "I'd better talk to the bank before I spend it, because of

what has happened to other people" is wisdom.

dataWorld Wide Web

knowledge

wisdom

structure

reasoning

actions

information

Agents

Semantic Web

Figure 2-1. Data pyramid

From the point of view of humans, the World Wide Web holds information. Un-

fortunately, from the point of view of computers, the vast majority of it is only

meaningless data. While it is not impossible for a client to semi-automatically

extract information out of the data (for example, scraping it out of HTML as in

[Kal02]), it is not easy, and often involves unreliable natural language processing

techniques. The conversion parameters must also be updated manually every

time the format of the data changes, which happens all too often on the visual

design-oriented web. Due to the huge amounts of data currently available on the

web semi-automatic extraction will be very important in the short term. The

eventual goal, though, is to have authors reliably convert their own data into in-

formation and publish the information directly in a computer-understandable

format.

This pool of interconnected information will be our Semantic Web. Computers

will be able to “understand” this information—that is, manipulate it at a more

abstract level to achieve results that rely on the information’s meaning. This kind

 7

of manipulation, including queries and inferences, will turn the information pool

into knowledge for the controlling client. The client could be a human, or it

could be a software agent, making decisions on behalf of its master. While the

specifics of agent decision-making are outside the scope of this thesis, agents

could well become the primary users of the semantic web and hence their needs

with respect to knowledge access and manipulation were considered at par with

the humans’ while working on this project.

2.1.2. Reification
To be pertinent and useful, the Semantic Web must contain information about

real-life objects, events and ideas. Since it is impractical to store and transmit

physical items in a computer network, and impossible to do the same for non-

physical ideals, we will need to find a way to represent them using the resources

at our disposal. This process is called reification.

Reification is defined as regarding something abstract as a material thing [Mil01].

In the context of modeling it means to create a representation within the model

itself of something that is outside of the model; in other words, to make the ex-

ternal thing “real” within the closed world of our system. Humans have done it

from times immemorial: pictures reify things within the world of the written

page, spoken words reify things within the world of oral communication, and

ideas reify things within our own minds. A picture of a pipe is not the pipe itself

(Figure 2-2, “This is not a pipe.”), but we understand that it reifies one and while

looking at it can make statements about the actual object without needing to

have it in front of us.

 8

I was unable to obtain an acceptable

copyright license for this picture for

purposes of web publication. Please

obtain a printed copy of this thesis

from the University of Victoria

library, or try searching the web for

Magritte’s La Trahison des Images.

Figure 2-2. R. Magritte’s “La Trahison des Images” (1929)
© Estate of René Magritte / SODRAC (Montréal) 2002

A model that uses reification consists of two things:

1. A formal system of symbols that can be manipulated.

2. An interpretation that relates the model’s symbols to the real things being

modeled.

While Uniform Resource Identifiers have been widely adopted as the reifying

symbols, there is little agreement on how to organize and manipulate them, and

how to interpret the resulting structures.

2.1.3. Uniform Resource Identifiers
Uniform Resource Identifiers (URIs) are defined in [BM+98a] as “compact strings

of characters for identifying an abstract or physical resource”. They are com-

monly used to address pages on the web (http://www.ideanest.com), specify FTP lo-

cations (ftp://seng330@www.engr.uvic.ca/notes.txt) and name newsgroups

(news://news.uvic.ca/uvic.engr.seng330). Their ubiquitous acceptance stems from the

fact that they are human readable and can be easily extended to encompass any

number of protocols without compile-time changes to existing tools thanks to a

consistent yet flexible syntax. Only new protocol handlers may need to be

plugged in; the generic URI parser never changes.

 9

Officially, URIs are meant to identify resources. A resource, in a somewhat circu-

lar definition, can be anything that has an identity. This of course includes elec-

tronic documents and services, but also covers concrete physical items, humans,

abstract ideas, etc. Note however that the entity returned when a URI is derefer-

enced (using a web browser, for example) is generally not the resource itself;

rather, it is some representation of it, or any other related entity that the resolu-

tion service thought appropriate to return. This formal extra level of indirection

often conflicts with a purely intuitive interpretation of URIs.

The impressive momentum of URIs is impossible to ignore, so just about all se-

mantic web proposals use URIs as their symbolic identifiers; this is both a bless-

ing and a curse. On the one hand, it means that there is some hope of integrating

the various systems since they use the same basic symbols and thus may even

share some vocabularies. On the other hand, URIs have so long been used only

for dereferencing through browsers that few people have bothered to officially

define the identified resource. This can result in considerable disagreement over

what a given URI identifies. 2 For example, does http://www.jeep.com identify:

• the Jeep company;

• the Jeep series of cars;

• the Jeep web site;

• the Jeep home page;

• the index.html file (or equivalent) that is returned by the web server;

• the web server itself?

When browsing the web, the answer does not really matter since the reader only

cares about the web page that is displayed when he or she types in the address.

In the semantic web, having everybody agree on an answer is paramount since

2 Actually, there is not even agreement on whether a URIs scheme limits the kind of resources it
can identify. For example, can “http:” URIs identify anything, or just documents?

 10

people will be making formal statements about the identified resource

(“http://www.jeep.com is great!”) and may never actually dereference the URI.

Even if everybody agrees on what resource a URI identifies at a given time, defi-

nitions tend to drift or be changed, and not everyone is notified of or agrees with

the changes. If an agent tries to merge information coming from sources that dis-

agree on the interpretation of the URI, and it blindly assumes that each URI iden-

tifies a unique resource3, it will at best end up with nonsense or at worst with

statements that will be misinterpreted relative to their authors’ intentions.

2.1.4. Ontologies
In its simplest form, an ontology is a dictionary that gives each symbol a defini-

tion in some well-known language with generally agreed-upon semantics (for

example, English). Even if the definitions are not perfectly unambiguous (as may

well be the case in English), they still provide a starting point preferable to the

interpretive free-for-all described in the previous section. If two documents ex-

plicitly declare that they draw their symbols from the same ontology (or ontolo-

gies), it is reasonably safe to merge their statements since the authors at least in-

tended to refer to the same concepts.

An ontology can define any kind of symbols. Some ontologies will define well-

known individual concepts (e.g., the Jeep company), while others may define

classes of individuals (e.g., the class of companies). The instances can then be re-

lated to their classes using standard “instance of” relationships defined in yet

another ontology.

Ontologies intended for public use are already being published on the web. For

example, the Dublin Core Initiative (http://www.dublincore.org/) is labouring on stan-

dardizing document metadata terms that define the characteristics of a work,

such as its title, creator, coverage, or publication date. The Creative Commons is

3 This appears to be a reasonable assumption since the standard [BM+98a] clearly states that URIs
are unambiguous.

http://www.dublincore.org/

 11

building a standard vocabulary for describing copyright license terms

(http://creativecommons.org/metadata/spec). WordNet [Mil01] is the ontological

equivalent of an English thesaurus. The less formal Friend of a Friend (FOAF)

vocabulary (http://xmlns.com/foaf/0.1/ and [Dum02]) covers concepts needed to de-

scribe professional collaboration, such as people and their relationships, organi-

zations and projects. For domain-neutral concepts, such as entity, relation and

part-of, the IEEE is designing a Standard Upper Ontology (http://suo.ieee.org/) that

tries to merge the many upper ontologies deployed as part of existing applica-

tions.

What distinguishes an ontology from any run of the mill semantic web document?

First, top-level ontologies need to have out-of-band definitions for their terms so

as to semantically bootstrap the system. Second, to be useful, an ontology’s defi-

nitions should be used in many other documents; in a usage graph, ontologies

are likely to be closer to the center, while other documents will tend to collect at

the periphery. However, the distinction is fuzzy, since any document whose

terms are referred to by others becomes a de facto ontology.

Finally, ontologies can be more or less useful depending on the subject area cov-

ered and the precision and stability of the definitions. As the semantic web takes

off, some of its proponents expect that an ecology of ontologies will evolve and a

form of natural selection will trim down the field to a reasonable size. For any

remaining overlapping ontologies people will construct mappings between the

terms according to some (hopefully) standard translation ontology.

2.2. Classifying Information
To impose order on a chaotic world, humans have been classifying objects since

ancient times (see for example Genesis 2:19-20). A class abstracts away the ir-

relevant details of its individual members, keeping only the essential shared core.

Classification lets us make sweeping generalizations, augmenting our expressive

power and clarifying the perceived structure of our world. While it is possible to

http://xmlns.com/foaf/0.1/
http://suo.ieee.org/

 12

make do without classes (see the programming language Self [US87], for exam-

ple), classification is so familiar that few knowledge representation systems

choose to go without. Class hierarchies are also the most popular content of on-

tologies, to the point that some people conflate ontologies with taxonomies

(classes).

This section gives a quick overview of the most important distinctions between

classification systems, characterizes the kind of data that is likely to appear on

the semantic web, and explains the impact on the choice of a classification

method. It then elucidates the initially tricky subject of stratified type models

and gives the definition of metamodel as used in this dissertation.

2.2.1. Classification of Semistructured Data
Classical metamodels (the relational data metamodel, for example) assume that

all data to be stored fits some particular, and often quite detailed, schema. This

schema must be defined in full before data can be input, and each record must

match the schema’s constraints precisely. Schema evolution is often painful since,

even if the particular database management system has good support for it,

chances are that the applications connecting to the database were written strictly

for the original schema and will need to have many of their assumptions re-

examined.

This highly structured data model works well when the organization of data is

well known ahead of time and a central authority has full control of it. Unfortu-

nately, this situation is the antithesis of what actually happens on the web. The

web (semantic or otherwise) is decentralized. No one can impose a uniform

schema on the data, and even should one be adopted coordinated evolution is

nigh impossible. Structured data models are a bad fit for the web.

Yet the data is not completely without structure. Some authors do follow the

same schemas (more-or-less), and even schema-less data is often fairly regular.

This is semistructured data—and, by extension, semistructured information—on

 13

the semantic web. We obviously need a flexible database to store this data at all.

To really take advantage of the information contained therein, though, we need

to identify as much structure as possible in the raw data. This is the domain of

classification.

The basic idea of classification is to assign (reified) objects to classes, so that we

can treat all the instances uniformly in some respect. The first question, then, is

how are objects assigned to a class. While a survey of data pattern identification

and matching algorithms is outside the scope of this thesis, it is useful to note the

degree to which the algorithm can be integrated into the database. The classes

can either be assigned externally, by naming the object and the class it belongs to,

or implicitly, by defining a class using some predicate that accepts or refuses ob-

jects based on their properties.

Next, we must ask how many classes an object can be assigned to, and whether

once made, the assignment is frozen or can be changed. Most class-based pro-

gramming languages only support single, static classification: each object is an

instance of precisely one class, and this class is fixed at the time the object is cre-

ated. In an information model, where objects are usually longer-lived and our

understanding of their properties likely to evolve with time, multiple dynamic

classification is preferable. This allows an object to be assigned to any number of

classes simultaneously, and the assignment to be changed at any time.4

Finally, systems that support classes typically also support a standard binary in-

heritance relationship between them (also known as specialization or subtyping).

The extent of support for inheritance varies along the same lines as classification:

single or multiple, static or dynamic. As expected, multiple dynamic inheritance

is preferable since it allows the class structure to adapt as closely as possible to

the semistructured data.

4 Systems that sport internal, predicate-defined classes must perforce support multiple dynamic
classification.

 14
2.2.2. Metamodel Stratification
In some systems, the objects are divided into strata based on classification. Each

object belongs to exactly one stratum, and all objects in a stratum must be in-

stances of classes in the next higher stratum.5 Those classes, considered as ob-

jects in their own right, are in turn instances of metaclasses in the next stratum,

and so on. (The prefix “meta” is commonly used to indicate a rise of one stra-

tum.) If the meta-tower is finite, we eventually reach the top stratum where ob-

jects are not instances of any classes; they just are. No relationships beside classi-

fication are allowed across strata.

The Unified Modeling Language (UML, [OMG01]), for example, employs a four-

layer6 stratified metamodel. The definition of the layers is detailed in Table 2-1

(adapted from [OMG01]). Objects in Mn are instances of classes in Mn+1, for 0≤n≤

2. Objects in M3, the top layer, are not classified; they are completely self-defined.

Layer / Stratum Description Examples
M3: meta-metamodel The infrastructure of the

metamodeling architec-
ture.

MetaClass, MetaAttrib-
ute, MetaOperation

M2: metamodel Objects that specify the
language for defining the
model.

Class, Attribute, Opera-
tion, Artifact

M1: model Objects that specify the
structure of the informa-
tion domain; user-
defined classes.

Person, name, writeThe-
sis, Dissertation

M0: user objects Objects that represent in-
dividuals; most of the ac-
tual data resides here.

<com.ideanest.Person
14218>, “Peter”, void
writeThesis(), <Disserta-
tion final copy>

Table 2-1. UML’s metamodel strata

5 In principle, a metamodel could be stratified according to any other intransitive relation, but in
practice there appears to be little use for such variations. At most, strata are defined based on
specializations of the classification relation, as in [AO+02].
6 The words “layer” and “stratum” are used interchangeably in the literature. A stratified meta-
model is said to follow a fixed layer metamodeling architecture.

 15

The alternative to a stratified metamodel is an unstratified one, where classes

and their instances are intermixed and can be directly related. Classification,

though it may be a privileged relationship, does not partition the model. A

trademark characteristic of unstratified metamodels is that they do not arbitrarily

cap the classification hierarchy. Instead, the “most meta” class is an instance of

itself, forming a classification loop that provides a finite representation of an in-

finite classification tower.

RDF Schema (RDFS, the schema component of the Resource Description Frame-

work, RDF [LS99]) is a recent example of an unstratified metamodel. This has

proved to be a mildly controversial choice; it seems that some people strongly

favour stratified metamodels. The arguments advanced against non-fixed layer

metamodeling architectures include (see [PH01a], [NWC00] and RDF mailing list

discussions):

• Unstratified metamodels are non-standard and difficult to understand.

• If classes are considered as sets, then having a set be a member of itself

may break the Foundation Axiom of set theory and is suspiciously close to

the Russell Paradox.7

• The semantics of unstratified metamodels are difficult to formalize and

lend themselves to the “layer mistake” problem (though how one can

make a “layer mistake” when there are no layers is not made clear).

Of course, there are corresponding counter-allegations from the other side of the

fence. The killer argument, though, is that stratified metamodels can be embed-

ded into unstratified ones with the addition of a few extra constraints, while the

converse is not true. Accordingly, Braque—the integration-friendly metamodel

7 The Russell Paradox [Kle01] is a variation on the Liar’s Paradox that goes as follows: consider
the set of all sets that do not contain themselves—is the set a member of itself or not? Standard
axiomatic set theory avoids the issue by forbidding this kind of set from being defined.

 16

introduced in this thesis—is unstratified, so that it can be the target of natural

mappings from both varieties of metamodels.

In an unstratified model, it does not make sense to use the prefix “meta” to refer

to specific layers. Thus, for the remainder of this thesis, the word “metamodel”

will be used to loosely signify the domain-independent mechanics (layers M2 and

M3 above), and the word “model” the domain-specific objects and classes (layers

M0 and M1 above), for both stratified and unstratified architectures.

2.3. Metamodel Semantic Layers
The Information Model Interoperability (IMI) Reference Model presented in

[MD00] describes a generic layered architecture that can be superimposed over

most metamodels. While the IMI proposal is new and unproven, and has not yet

gained widespread acceptance, it provides a useful framework for comparing

metamodels and investigating possible mappings at a higher level of abstraction.

This section is a summary of the relevant portions of [MD00], with a few criti-

cisms and opinions thrown in for good measure.

Note that the layers presented here are orthogonal to the classification strata de-

scribed in Section 2.2.2. Objects and classes across all strata belong to the object

layer in the IMI Reference Model.

2.3.1. IMI Reference Model
The IMI Reference Model takes its cue from the well-known, widely adopted and

successful OSI network model. It follows a standard layered architecture where

each layer provides increasingly more abstract services to the layer above (see

Figure 2-3, as presented in [MD00]).

 17

Semantic Layer

Object Layer

Syntax Layer

- languages (e.g. logics, workflows, rules)
- domain models (e.g. CWM)
- conceptual models (e.g. UML, RDF Schema)

- n-ary relationships
- ordering
- reification
- basic typing
- binary relationships
- identity

- restricted document models (e.g. DTDs)
- generic document models (e.g. XML, ASN.1)
- serialization (e.g. Unicode, binary)

Le
ve

l o
f

ab
st

ra
ct

io
n

Figure 2-3. IMI Reference Model layers

Starting at the bottom, the syntax layer is only concerned with serializing infor-

mation into a low-level data format from which the information can later be rec-

reated. While a detailed and complete specification of a model’s syntax layer is

crucial when defining an interchange standard, in the larger scheme of things the

actual syntax chosen is mostly irrelevant. Some formats may be easier to write

by hand, others may be easier to parse, some (like XML) may be neither, but in

the end the data at this level is only a temporary representation and will rarely

be operated on directly (see Section 2.4.1 to understand why).

The object layer in the middle provides an object-oriented view of the informa-

tion to the client application. It provides direct access to the basic features of an

information model (discussed below in Section 2.3.2), such as identity, binary re-

lationships and classification. It is primarily at this level that various information

models are differentiated.

The top semantic layer is responsible for mapping the information primitives of

the layer below to the real world (e.g., with a model theory). This layer also

holds more advanced knowledge-level facilities, such as standard ontologies and

inference languages. “The ultimate goal of the Semantic Web is to make applica-

tions interoperate in the semantic layer.” [MD00]

 18

Of course, one person’s object layer may well be another’s syntax layer. For ex-

ample, XML intrinsically defines identity, basic typing and ordering and, with

the addition of XLink [DMO01], it covers binary and n-ary relationships as well.

Some choose to use these features directly to represent information objects; oth-

ers merely use them as a well-defined lower-level mechanism for expressing

their own object layer model [PS02]. Though sharing a common language on the

surface, these two uses are mutually incompatible and should not be confused.

Section 2.4.3 delves deeper into this problem.

2.3.2. Object Layer Features
The object layer encompasses the basic structural features of a metamodel. Not

every feature in this layer is necessarily primitive—some may be defined with

the help of an adjunct ontology—membership is a function of how important a

feature is for modeling.

The IMI Reference Model assumes that all metamodels subscribe to the “objects

and relationships” view of the world (for an alternative, see Section 6.2.1). As

such, it is imperative that every metamodel be able to represent unique objects

(identity) and simple links between them (binary relationships). Each object has its

own identity; the notion of value equality (if any) is distinct, and does not affect

identity. The identity key may be hidden, but when models are exchanged it

must be externalizable in some common format (e.g., URIs). The binary relation-

ships are simple directed links between objects and should not be confused with

associations, which describe classes of links and are not included in this layer.

Groups of binary links of one type from one object to many targets are also used

to model collections.

Given that classification is such a common and important activity (see Section

2.2), it should come as no surprise that the IMI Reference Model expects most

metamodels to provide basic typing facilities. Each object should be assigned a

 19

type, also represented by an object.8 Nothing more is required from the type

model—type specialization is notably absent—and both stratified and unstrati-

fied styles are permitted.

Next up is link and association reification.9 The idea here is simply to make links

and associations (link types) first-class citizens of the model. Once a link or asso-

ciation is seen as an object, it can be further referenced in other links to provide

further details about it. For example, link reification is often used to indicate the

provenance of links, which can then be a factor when trying to ascertain the truth

of the implied statement. In general, reification is a powerful feature that greatly

increases a metamodel’s flexibility.

When an object is involved in many links, especially of the same type, its partici-

pation in the relationships may need to be ordered. For example, if an object rep-

resenting a research paper is linked to multiple authors, we need to model the

order in which the authors are listed. Similarly, if an author is linked to all her

research papers, we may wish to order the links chronologically, or in order of

perceived importance. Link ordering is often implemented with the use of a

standard ordering ontology, but it is nonetheless a basic feature necessary to

model many common (if subtle) situations.

The final component ascribed by [MD00] to the object layer is n-ary relationships.

An n-ary relationship is logically equivalent to a link between n objects, though

they are often composed from a standard arrangement of binary links. The au-

thors do not make clear whether the objects participating in the relationship are

merely ordered or if the role that each plays is explicitly indicated. Depending

on the modeling style adopted, n-ary relationships may not be used very often,

but they are difficult to emulate properly if the feature is not available.

8 This seems to implicitly require type reification, excluding metamodels where types fall com-
pletely outside the model. It is not clear whether the authors intended to impose this restriction
or if it’s accidental.
9 Reflection would probably be a better term for this mechanism, but at this point reification is too
entrenched to be displaced.

 20

2.4. Mapping between Metamodels
When integrating disparate models, there must be some kind of mapping be-

tween the elements of the source and those of the unified target. The mapping

can be performed at different levels, described by the IMI Reference Model. This

section explains some potential information integration styles and their tradeoffs

in terms of the reference model’s layers, with analogies to natural language

translation.

2.4.1. Syntax-to-Syntax Mapping
At first glance, the simplest approach to model interchange might appear to be a

mapping at the syntax level. After all, at this level the information is serialized in

some well-defined, externally readable format that can be processed using stan-

dard tools. The mapping might take the form of an XSLT [Cla99] transform that

would take a document in one format and, by moving pieces around, translating

tags and doing other minor alterations, would eventually output a document in

the other format.

The analogy to natural language translation would be a beginning student of a

foreign language attempting to translate a sentence with the help of a dictionary,

but no knowledge of the grammar. For example, the French sentence “La chemise

est bleue.” would map word-for-word to “The shirt is blue.”. However, in a direct

mapping of a more complicated sentence like “On s’ennuie de toi.” to “We our-

selves bore of you.” it is nearly impossible to select the correct translation of “en-

nuie” without looking at the context. The purported translation is made up of

English words but makes no sense to an English speaker.

Since most synthetic information languages are simpler than natural ones, this

approach can work in the computer world, and is especially popular for map-

ping between various XML vocabularies. It works well when the information

structure (in the object layer) is close to the natural structure of the chosen syntax,

or when the information structures being mapped are already similar [Vli01].

 21

However, it becomes impractical to use a syntax mapping when the serialization

format becomes more complex. Since the transformation is not constrained by

the structures of the object layers involved, it can be difficult to produce a docu-

ment that will deserialize into a valid instance of the model. (Imagine trying to

write a compiler that does not create an abstract syntax tree!) Efforts to sur-

mount this problem usually result in the transforming application deserializing

progressively larger parts of the document into an information model, eventually

resulting in what is effectively an object-to-object mapping. (See Section 5.3.4 for

an example.)

In practice, syntax-to-syntax mapping can be used to quickly integrate models

with simple syntax that corresponds directly to their semantics, but it is imprac-

tical when integration requires structural changes to the model above the level of

a simple graph.

2.4.2. Object-to-Object Mapping
Since a syntax-level mapping can quickly get out of hand, an object-level map-

ping that raises the level of abstraction is the next logical avenue to explore. In

this approach, the object-level features of one metamodel are mapped directly

into the equivalent features of the other metamodel. The mapping can be pre-

pared in advance and later automatically applied to any number of models.

To prepare an object-level mapping from French to English, we would first con-

sider all possible grammatical forms in French; each would then be mapped to

the equivalent expression in English. This would be a monumental task due to

the large quantity of grammatical forms and the many exceptions fostered by

natural language. In addition, since not all French expressions have an exact

equivalent in English, the mapping must be prepared on a best-effort basis, ac-

knowledging that some finer details will be lost. For example, French has many

more verb tenses than English, and while they are somewhat interchangeable

each gives a slightly different flavour to a statement. Translating a statement

 22

back into French is unlikely to recover the original sentence. As most machine

translators work at this object level, it can be very entertaining to translate a sen-

tence back and forth between two languages, watching its meaning drift with

each mapping.

Though synthetic languages are simpler, establishing a good mapping is also of-

ten a problem. The various metamodels use different fundamental semantic fea-

tures as part of their object layer. For example, some have a simple source and

target for each binary relationship, while others require the roles played by each

member to be specified. Some metamodels have no direct support for n-ary rela-

tionships (they are modeled in the semantic layer), while others have no stan-

dard way of expressing order. There is no agreement whatsoever on more ad-

vanced features such as reification and scoping.

Thus, when building a mapping, it is rare to find an exact equivalent for each fea-

ture. Richer features that are forced into simpler forms will have to lose some of

the data they carry, distorting the information and making roundtrips impossible.

Basic features being integrated into a richer metamodel need additional informa-

tion to be synthesized, which cannot be done without supplementary per-model

instructions. Some features do not have even a rough match and must be dis-

carded altogether or lifted to the semantic layer.

2.4.3. Object-to-Semantic Lift
When features cannot be mapped directly, and the information they encode must

be retained, they must be described indirectly using the object-level features of

the target metamodel. This effectively lifts some object-level features of the

source into the semantic layer of the target metamodel. All information can then

be preserved, so the lift enables roundtrips. However, tools written for the target

metamodel will be unable to “understand” the meaning of the additional infor-

mation introduced and will only be able to deal with it in a generic manner, since

the semantics of the extra features were not programmed into the applications.

 23

The logical limit of this approach is to lift the whole object layer of a metamodel

when mapping, using the target metamodel’s objects as a structural mechanism

stripped of its semantics. This effectively pushes the target object layer into the

syntactic layer and has been referred to as “modeling the model” [Moo01]. This

approach is often used when integrating a much more complex metamodel into a

simpler one, since the number of features that can be mapped directly is likely to

be small anyway.

In our analogy, a semantic lift might result in “La chemise est bleue.” being

mapped to “A French sentence whose subject is ‘the shirt’, whose verb is ‘to be’ in the

present tense, and whose predicate adjective is ‘blue’.”. This kind of mapping works

for all French sentences and the result is a correct English sentence that retains all

the information of its French counterpart. It is not, however, a translation: the

resulting statement describes the original sentence instead of restating its claims

in English. While the meaning can be recovered, it requires a knowledge of the

ontology of French grammar.

A corresponding semantic web example is the proposal of a mapping of the

complex Topic Maps metamodel to the simpler (but more popular) RDF meta-

model [LD01]. The mapping first decomposes Topic Maps object-level features

into a syntactic graph (following the [NB01] proposal), then expresses this graph

using some of RDF’s object-level features, namely identity, binary associations

and reification. The mapping is unidirectional, complete and reversible. It is a

lift because it introduces an ontology (in the semantic layer) that is necessary to

interpret even the basic features of translated models.

Lifts are thus a tradeoff. They allow an automated mapping from one meta-

model to another with no loss of information, and enable many tools of the target

metamodel to be used (e.g., databases, query engines). However, any manipula-

tion of the translated model using the target metamodel’s tools effectively occurs

at the syntax level with the concomitant fragility identified in Section 2.4.1,

 24

unless the semantic layer supports imposing constraints on the model to mitigate

the issue.

More importantly, though, lifts are inimical to model integration, since a feature

expressed directly in the target metamodel will differ from the same feature

lifted from the source metamodel. For instance, in the Topic Map to RDF lift dis-

cussed above, both metamodels directly support binary associations. In RDF, a

binary association is represented as a labelled directed arc between its two mem-

bers. When the same binary association is expressed in a Topic Map, then lifted

into RDF using [LD01]’s scheme, it is represented with no less than 14 arcs be-

tween 9 nodes,10 and those 14 arcs do not even include the single arc of the natu-

ral representation. This is a serious problem, since one of the basic tenets of in-

formation integration is that there must be only one way to represent each piece

of information.

2.4.4. Semantic-to-Semantic Mapping
A mapping can also be carried out at the semantic level by interpreting the in-

formation represented in one model then re-encoding it using a different meta-

model. This is the task performed by a translator who reads a French document

and writes an English one that delivers the same information, though the forms

of the sentences may be completely different. This procedure has to be carried

out manually by a human with a good understanding of the domain being mod-

eled and of the structure of both metamodels involved. It is the most accurate of

all approaches, since the meaning of the model is what humans actually care

about. It can be usefully applied to small, high-level ontologies, but does not

scale to large models.

10 If this seems excessive, remember that the Topic Map metamodel is richer and a binary associa-
tion carries more information that in the RDF metamodel.

 25
2.4.5. Mapping Summary
Mapping is a necessary part of any attempt at integrating information. Neither

syntactic nor semantic mapping is practical in the context of the semantic web;

the first is too fragile and the second does not scale. The only option left is an ob-

ject-level mapping that does not perform any lifting. Specifying mappings indi-

vidually between every pair of metamodels is a futile effort: it results in the

Stovepipe System anti pattern [BM+98b], where the number of mappings grows

as the square of the number of metamodels. The best solution is to have a single,

central metamodel into which all the others can be integrated, with one mapping

per foreign metamodel. To avoid losing information, the target metamodel must

be richer than all the source metamodels, so that good equivalents can be found

for all primitive elements.

The following chapter introduces a new metamodel that satisfies these con-

straints, and Chapter 4 gives information-preserving mappings from other popu-

lar semantic web metamodels.

 26

3. The Braque Metamodel
This chapter describes the Braque11 information metamodel, strongly inspired by

the principles and ideas put forth in [Gri82]. We begin by restating the design

goals and their implications, and proceed to build up the metamodel from primi-

tive elements to logical constraints. Along with the metamodel, we introduce a

visual graph-based notation for representing its instances. This notation is

loosely based on UML [OMG01], but was modified to better fit an unstratified

metamodel where classes and their instances are likely to appear in the same

diagram. ([Sch02] is a draft for a similar notation for the OWL [DC+02] ontology

that stays within the UML framework.)

This chapter is written in a tutorial style, introducing features gradually and

providing many examples. For a concise reference to the metamodel, refer to

Appendix A. Some of the longer and more abstruse discussions of open research

questions raised in this chapter can be found in Appendix C.

3.1. Goals and Principles
The primary goal for the Braque metamodel is that it be sufficiently flexible to be

able to represent any kind of semi-structured data that might be encountered on

the semantic web. It must be able to integrate information from all kinds of

sources without resorting to a lift and with no loss of meaning, since it seems

unlikely (and perhaps undesirable) that everyone will agree on a single meta-

model for all data. The metamodel mappings must be complete and must not

require changes to the original metamodels. Flexibility will be evaluated by try-

ing to integrate some other metamodels that have thus far resisted unification

(Chapter 4).

In order to be flexible, the metamodel cannot force a strict type system, since this

would prevent data integration from untyped metamodels. The metamodel

11 See Appendix C.1 for background information on the choice of name for this project.

 27

should also be as simple as possible. A small number of primitive constructs and

the ability to combine them in many ways give it the best chance to be able to

adapt to any kind of metamodel we might run into. For example, drawing an

analogy to programming languages’ data models, there should be no distinction

made between primitive values and objects (as in C++ and Java). Rather, all in-

formation elements should be treated the same way so as to maximize flexibility

(as in Smalltalk). The usual trade-off is a loss of efficiency, which I consider ac-

ceptable.

Another feature critical to flexibility is the ability to reference anything in the

model. Once again, by analogy to programming languages, we need powerful

reflection facilities such as Lisp’s ability to reference the program itself as a list,

or Scheme’s continuations. This leaves the metamodel open to manipulation

from within the models themselves. An important aspect of this feature is that

the metamodel must be closed under queries: the results of any query will

“look” the same as any other part of the model, and can be referenced directly.

Since the new metamodel is meant to be used to integrate data from the semantic

web, it must deal with issues of trust. At the very least, it must be easy to iden-

tify the provenance of each piece of information, and to filter out information

that is not deemed trustworthy. The previous two principles dictate that this

should not be a special-purpose mechanism (simplicity) and that it can be

achieved by referencing all the data obtained from a source (universal references).

The metamodel is also not meant to be locked in an ivory tower: it should be

comprehensible to developers, and allow clear visualizations for end-users. This

eliminates the very expressive and powerful approaches based on formal logic

statements. The comprehensibility goal will be evaluated by qualitatively com-

paring the elegance of Braque to other metamodels, and by verifying that the

programming interface can be expressed nicely in an object-oriented program-

ming language. The visualization goal will not be evaluated in this thesis.

 28

While it must be possible to build an implementation of the metamodel, its com-

plexity and efficiency are not concerns at this stage. Powerful metamodel fea-

tures are worth a one-time extra developer effort during the implementation, and

optimization should only be performed once critical sections have been identi-

fied.

Ease of serialization is not a goal either. If data needs to be exchanged, it can be

exported in any of the multitude of other standard formats. Manual data ma-

nipulation will be done with the assistance of an application and not directly

through a text file. Thus, no serialization format (XML or otherwise) is specified

in this thesis.

3.2. Primitives
We first define the truly primitive features of the metamodel—its object layer in

terms of the IMI Reference Model. While the reference model considers basic

typing and reification to be in the object layer, in this metamodel they are built in

the semantic layer using the primitive features, and hence presented in Section

3.3.

3.2.1. Atoms
The first thing we put into the metamodel are atoms. Atoms, also known as

urelements12 or individuals, have no internal structure and reify any thing or

concept that we cannot or do not wish to further decompose. Examples include

literal values such as Booleans, numbers, characters, dates, etc. We also use at-

oms to stand for things in the world outside our system, such as books, people,

web sites, files, etc. The only difference between the two kinds of atoms is that

some may stand for things that have a representation in the programming lan-

12 “Ur” is a German prefix which is difficult to translate literally, but has a meaning close to “pri-
meval”. In “pure” set theory, all elements are sets and there are no urelements. Often, the axioms
of set theory are modified to allow the presence of urelements for ease in representing something.
[Wei02]

 29

guage we happen to be using, while others may not; this distinction is mostly ir-

relevant to the metamodel.

Figure 3-1 shows a few atoms. The first is an anonymous “plain” atom that rei-

fies some object with no direct representation within our system. A model will

usually contain a large number of these, each reifying a different object, but the

only way to apprehend the referent is by examining the relationships into which

it enters. The other atoms reify literals for which some sort of native representa-

tion exists. It is usually safe to assume that all systems provide a native repre-

sentation of strings, Booleans and numbers, so we will make free use of literals of

these types throughout the rest of this document.

42 true 2002/08/13

Figure 3-1. Representation of plain and literal atoms

Each atom has its own unique identity, independent of any value it might be rei-

fying. However, literals are tidy, so there is precisely one atom for each possible

value of a literal of a given type. Thus there is only one atom that represents the

string “42”, and a separate unique atom that represents the number 42.

3.2.2. Hypersets
The other kind of primitive element is the hyperset. A hyperset that contains

other elements reifies a real-world association between the items reified by its

members. Structurally, a hyperset is a set, and can contain any mixture of atoms

and hypersets. Hypersets differ from classical sets in that any given set is al-

lowed to contain itself. In axiomatic set theory, this is achieved by replacing the

Axiom of Foundation with the Anti-Foundation Axiom [Acz88], so hypersets are

often called non-well-founded sets.

Each hyperset has its own unique identity, independent of any commonalities in

structure with other hypersets. (To determine structural equality, one must re-

sort to the bisimulation algorithm defined in [Acz88], since the usual extensional

 30

definition does not work for non-well-founded sets.) The hypersets’ identity fea-

ture and ability to hold references to other hypersets combine to give the abilities

ascribed to “reification” in the IMI Reference Model, though a more ambitious

mechanism is introduced in Section 3.3.7.

Figure 3-2 gives an example of a small model built using atoms and sets. Figure

3-2a employs a simple nesting notation. Sets are drawn as large ellipses, atoms

as filled dots, and membership is indicated through containment. The literal at-

oms’ labels merely indicate the value to which each atom corresponds in our in-

terpretation; they are not part of the model. Instead, each atom that has a repre-

sentation in the underlying system would be mapped to it in an implementation-

dependent way.

42
true

2002/08/13

(a) (b)

42

true 2002/08/13

Figure 3-2. Two representations of sets

Figure 3-2b shows the same model as Figure 3-2a, but uses a custom-made di-

rected graph notation loosely based on the one presented in [Acz88]. Sets are

drawn as empty boxes and literal atoms as boxes with their value underlined.

Arrows with a filled dot at their origin point from sets to their members.

You can tell that both sets in Figure 3-2 are classical because the graph in Figure

3-2b is acyclic. Figure 3-3 shows an example of a recursive hyperset that gener-

ates an infinite expansion. It is not practical to represent such models using

nested diagrams, as illustrated by the Escher print in Figure 3-4. The artist ren-

dered a picture that contains itself, but had to leave a blank spot in the center

since it is impossible to directly represent this kind of embedding. The same

 31

problem occurs when trying to draw a self-nested set, so the rest of this thesis

only uses the directed graph representation.13

true 2002/08/13

Figure 3-3. A recursive hyperset Figure 3-4. M.C. Escher's “Print Gallery” (1956)
©2002 Cordon Art - Baarn - Holland.

All rights reserved. Used by permission.

With only two kinds of primitive elements, the metamodel is very simple. It

could be pared down further by defining atoms to be empty hypersets. There is

no benefit in such a redefinition, though, since it does not make the metamodel

any more expressive and it may be confusing to model atomic values as empty

sets. The metamodel also allows for literal nests, if it happens that the underly-

ing system can directly represent the object that the nest reifies; these are rarely

used.

3.2.3. Identity
While it was mentioned in passing above, it is useful to expand a little on the no-

tion of element identity. How, exactly, is each element identified? Since we are

13 Section 5.1.1 explains why this is only a representation and how the metamodel differs from a
traditional directed graph.

 32

dealing with the Semantic Web, URIs appear to be a good first candidate for the

job. They are uniform, and the social conventions surrounding them should en-

sure a unique authority to determine the referent of each one. On the surface, it

seems that using URIs as the primary identifiers for our elements (like in RDF) is

a good idea: each object would be internally coupled with a URI, and each URI

would be tied to at most one element.14

On reflection, the idea’s appeal fades. As explained in Section 2.1.3, there is no

widespread agreement on what each URI identifies. When interpretations col-

lide, it is important to be able to reason about what different people believe each

URI identifies. This is impossible if the URI is hardwired into the element.

This situation bears some similarity to the debate on natural versus surrogate

primary keys in the relational database community. A natural primary key is

formed using an existing subset of columns in a table such that each row is as-

sumed to have a unique unchanging tuple “key”, dictated by the business rules

governing the data. The widely noted problem, of course, is that business rules

change and humans are not perfect, so natural primary keys end up neither fixed

nor unique, upsetting all other tables that use them as foreign keys. The widely

adopted solution is to employ a surrogate primary key by adding a new column

to each table that will hold arbitrary unique and unchanging values unrelated to

the meaning of each record. A good application will hide the values of these sur-

rogate keys from users, expressing them as relationships between data records.

The answer for our metamodel follows this pattern. Each idea has an intrinsic,

unique, unchangeable identity that is not externalized in any way; this encapsu-

lation can be likened to using opaque references instead of address pointers in a

programming language. Other than identity creation and deletion, which coin-

cide with the creation and deletion of ideas, only two other identity operations

14 Strictly speaking, this is not true for RDF since the standard also allows “blank nodes”. These
objects are existentially qualified and have no well-known identifier.

 33

are permitted. First, two identities can be compared for equality, to see if two

references to ideas really refer to the same one. Second, an identity can be re-

placed by another (existing) one; atomically, all references to the idea with the

first identity are replaced with references to the second, and the first idea is de-

leted. This operation is similar to the “become:” primitive in some dialects of

Smalltalk.15 [GR89]

3.2.4. Ordering and Duplicates
While the metamodel as presented above is formally complete, the models are

meant for human consumption and people often like to have data elements con-

sistently ordered. It is possible to encode order directly with sets, so adding it as

a primitive will not increase the expressive power of the metamodel but it will

make ordering elements far more convenient and efficient.

The most common way to order elements is to impose a total order on the set,

making a chain. This is not enough, though. When integrating data obtained

from different sources, it is likely that we will have to merge ordered sets to-

gether. Since we expect the data to be semistructured, it is possible that the sets’

members will not be comparable to each other. We must thus include partially

ordered sets in our metamodel to satisfy the goal of smooth integration.

It is also useful to relax the set restriction and allow duplicates into the collec-

tions. In this way we obtain lists / n-tuples (when totally ordered) and bags /

multisets (when unordered). The former are especially useful, since pairs can be

interpreted as directed arcs and used to attach properties to elements (see Section

3.2.5).

15 In the original Smalltalk-80, “become:” swaps the two identities. In some later versions, the
original identity is destroyed as part of the operation, leaving only the new one.

 34

The graph representation has only basic facilities for indicating primitive order,

since complex orderings are usually inferred from semantic features anyway.16

Figure 3-5 illustrates a nest that contains two members: the literal true in the first

position, and the date 2002/08/13 in the second. Order is shown with increasing

numbers of tick marks, though the technique is only practical up to three or four

members.

true 2002/08/13

Figure 3-5. Ordered members

Table 3-1 shows some of the kinds of collections possible in the metamodel, or-

ganized along the axes of ordering and duplication and stripped of the “hyper”

prefix. We will use the term hypernest (or nest for short) when referring to a col-

lection that is part of a model but whose exact kind is irrelevant.

 Unordered Partially Ordered Totally Ordered
No Duplicates set poset chain
Duplicates Allowed bag pomset list / n-tuple

Table 3-1. Kinds of nests

Partially ordered multisets (pomsets) are the most general type in the table above;

all the other types can be considered as restrictions of pomsets [GM95]. We can

thus simplify the metamodel to one of atoms and hyper-pomsets without losing

the familiar collection types familiar to software developers. This list of collec-

tion types above is not exhaustive, since other kinds of pomset restrictions could

be considered (e.g., multi-linear). For this reason, and because the exact restric-

tion type is usually relevant only to the implementation, the graph representa-

tion of the models does not directly indicate the kind of each nest.

16 For example, a partial order is most easily indicated with an acyclic directed graph. This graph,
built using totally ordered pairs, would then induce a partial order on the collection of elements
so linked.

 35
3.2.5. Nest Size
There is one last “primitive feature” that should be explicitly stated: the meta-

model allows nests to have an infinite number of members. That is, nests can be

of any cardinality. This is hardly surprising from a mathematical point of view,

but bears affirming in a computer science context. The need for infinite extent

will become clear when the naïve typing system is introduced in Section 3.3.1.

Some examples of nests with infinite extent are the sets of numbers, moments in

time, and positions in space. Notice that many of the infinite sets are dense, or

even uncountable. They have a natural total ordering of their members, yet there

exists no sequence that would enumerate them in the correct order. These infi-

nite chains cannot be ordered using ordinal properties or linked lists, the only

techniques considered in the metamodel survey [MD00].

3.2.6. Notational Sugar
All the metamodel primitives have now been introduced. The graph representa-

tion, though unable to express every possible model, is sufficient for our needs

here. Nevertheless, manually expressing some common higher-level features in

terms of nest membership quickly gets laborious, so it is worth introducing a few

notational shortcuts. Each shortcut is directly equivalent to a structure built out

of the primitives introduced above, so this section does not actually introduce

any new features.

Thus far, all the nests have been anonymous, their identity determined by the

graphic’s location in the picture. When talking about larger graphs, it is useful to

be able to refer to specific nests or atoms in the text, which is inconvenient for

anonymous rectangles. Obviously, the solution is to label them, but note that

this label is only an externalization of the element’s innate identity and is not it-

self part of the model. For example, in Figure 3-6, nest A is structurally the same

as both anonymous nests (though each maintains its own separate identity),

while nest B holds non-literal atom C as a member.

 36

A B C

Figure 3-6. Labelling elements to externalize their identity

With labels, we can also decouple the identity of an element from its visual rep-

resentation. One approach would be to say that any two components sharing a

label represent the same element. However, this can lead to inadvertent label

collisions unless disjoint namespaces are strictly enforced. Since this is an infor-

mal notation, we instead differentiate between labels that name a new element

being introduced versus labels that refer to a previously declared element. This

prevents accidental aliasing (since each labelled element is unique) at the ex-

pense of occasional referential ambiguity, tempered by the ability to scope the

labels.

Figure 3-7a declares the nest A and two distinct atoms both labelled B. Figure

3-7b shows an ambiguous reference to some atom called B. Figure 3-7c shows a

scoped reference to the atom B contained in the nest A. References can be scoped

to any nesting level.

(a)

B A B ::B A::B

(b) (c)

Figure 3-7. References and scoping

Nest membership, being the fundamental relationship, sees extensive use. It is

useful to have a few different ways of expressing it to make a diagram clearer.

Figure 3-8 shows four equivalent ways of expressing two membership relation-

ships. In Figure 3-8b you can read “: A” as “in A” (or, as explained in Section

3.3.1, “of type A”). There can be multiple such annotations, one per line, and

they are all implicitly references so the nest must be declared elsewhere. In

Figure 3-8c, visual containment indicates membership, and the contained ele-

ments can be declared in situ or referenced as explained above. This notation is

 37

especially useful when B is being used as a namespace. Figure 3-8d shows a

combination of both alternative notations.

::A B
: A

B

::A

B

C C

C
: A

B

C

(a) (b)

(c) (d)

Figure 3-8. Equivalent representations of membership

Finally, since models make extensive use of binary relationships, having a con-

cise way of expressing them would greatly improve readability. For this purpose,

we use a simple arrow from the origin to the target; the two parts of Figure 3-9

are equivalent. When using the shorthand notation in Figure 3-9a there is no

way to refer to the relator nest identified as P in Figure 3-9b.

P

(a) (b)

≡B
B

A
A

Figure 3-9. Binary relationship shorthand

More graphical abbreviations will be introduced as we expand the metamodel’s

semantic layer in the following section.

3.3. Naïve Upper Ontology
At this point, the metamodel is still missing some features that many would con-

sider basic—typing and identification, for example. These features are not primi-

tive in the metamodel, but rather built in the semantic layer using the fundamen-

tals introduced above. The construction is naïve, relying on intuitive definitions

 38

of the necessary concepts rather than fancy technical approaches. Thanks to this

lack of extensive technical constraints, other upper ontologies can easily be em-

bedded in the naïve upper ontology.

Those advantages notwithstanding, it is important to realize that this naïve up-

per ontology (NUO) is not a part of the metamodel. It could be replaced with

another upper ontology, for example a stratified one, or one specific to the mod-

els under consideration. It could even be scrapped completely if typeless, name-

less models are sufficient for the task at hand. However, for the purposes of in-

tegration, a light, naïve upper ontology is a desirable asset.

3.3.1. Types
While the metamodel does not enforce strict typing, it is useful to look at how

classes might be represented. The most intuitive approach is to consider a class

as the set of its instances. The instances can be added to the class set manually,

which would directly correspond to an extensional definition of the type. The

contents of the type set can also be the result of a query, perhaps based on some

properties of the class set, corresponding to an intensional definition. The defini-

tion could even be mixed, such as for a concrete superclass that automatically

contains all the instances of its subclasses, but may also have explicit instances of

its own.

Figure 3-10 shows an example of the class of Booleans. The class contains two lit-

eral atomic instances, true and false.

Booleans

true false

Figure 3-10. Booleans class

In a traditional class-based metamodel, and in accordance with intuition, all ob-

jects should be instances of at least one class. What is the class of the Booleans

 39

nest? Since Booleans is a class, we need to introduce a class of classes, which we

will call Classifiers (Figure 3-11).

BooleansClassifiers

true false

Figure 3-11. Booleans is a classifier

We are now left to ponder the type of the Classifiers nest. Let us informally de-

fine the Classifiers class as “all nests that impart some common characteristics to

their members, which are considered their instances”. It is then clear that Classi-

fiers is a classifier itself, since it contains nests whose common characteristic is

that they are all classes that are considered instances of the Classifiers class. Thus,

Classifiers is a member of itself (Figure 3-12), providing one reason why non-well-

founded sets are needed.

BooleansClassifiers

true false

Figure 3-12. Classifiers is an instance of itself

This approach to typing gives the metamodel an unstratified (non-fixed layer)

architecture. The advantage is that types and instances are all part of the same

model and can be treated uniformly, which is very important for semistructured

data [ASB99]. The purported disadvantages were mentioned in Section 2.2.2.

However, those objections are irrelevant in view of the project’s stated goals:

since there are other metamodels that use a non-fixed layer architecture (for ex-

ample RDF [LS99]), Braque must support it too to be able to integrate them.

3.3.2. Relations
With a basic type system available, we can now define relations. We will use the

mathematical definition of a relation: it is a set of n-tuples, usually of the same

 40

ordinality [Wei02] (see Section 3.4.2 for details on expressing this constraint). For

now, we will only define binary relations, since those are the most commonly

used. Figure 3-13 show the Binary Relations class and a sample instance of it, the

relation Length that establishes the correspondence between a few strings and

their length.

Binary RelationsClassifiers

Length

a

b

"Peter"

5

"Pierre"

6

Figure 3-13. Example of a binary relation

This representation is a little unwieldy, but we cannot replace the two relator

nests a and b with the shorthand arrow notation since we need to refer to them to

show their membership in the Length relation. As this pattern is repeated quite

often, it is worth introducing a new shortcut notation for typed binary links

(Figure 3-14).

R R≡
A

B
A B

Figure 3-14. Typed relationship shorthand

We can now redraw Figure 3-13 as Figure 3-15, preserving the original meaning

(though the relators are now unlabeled). Note that using Length as the type of a

relator does not automatically imply that Length is an instance of Binary Relations.

This relationship must still be asserted explicitly, since the relation might actually

be an instance of some specific subtype of Binary Relations.

 41

Binary RelationsClassifiers Length

Length

Length

"Peter"

"Pierre"

5

6

Figure 3-15. Example of binary relationship shorthand

Do not confuse the shorthand link notation with a labelled graph. Each relator is

still an individual nest with identity, not just a labelled arc.

3.3.3. Membership Reification
In a model, reification is the action of making some implicit object “real” within

the model, and thus gaining the ability to refer to it. Most commonly used is rei-

fication of links (statements), for example to make further statements about their

origin. The Braque metamodel naturally caters for this common case since links

are just nests (relators), and can already be referenced directly in other nests.

Reification of membership is more rarely used. The intention is to reify the com-

ponent objects of a link to make statements about them. In Braque, this is

equivalent to reifying the membership of each element. For n-tuples, you can

think of it as reifying the endpoints of the binary link.

The mechanism is as follows. Each model that requires reification includes a

special Member relation. It contains one container-member pair nest for each

such pair present in the model. For bags and lists, each duplicate member gets

its own reified membership pair. The Member relation is partially ordered: the

pairs for each nest match the order of its members, and pairs corresponding to

different nests are unrelated.

Note that the Member relation is defined over the whole model, and is itself part

of the model. Consequently, if a model contains at least one non-empty nest, the

Member relation will hold infinitely many membership reification pairs. The first

pair reifies a member of the non-empty nest, which introduces a nest with two

 42

more members into the relation. The nest’s membership in Member and its own

members are reified, in turn, and produce three more pairs, etc. ad infinitum.

Membership reification is rarely needed, but can be very useful when we need to

distinguish between duplicate elements in a nest and when integrating meta-

models (see sections 4.2.6 and 4.3.1). It is almost never useful past the first level

[New02], but the metamodel must support arbitrary reification to be consistent.

The reification is also pre-emptive rather than lazy (on-demand) [New02]; this

creates a strong connection between the membership and its representation, and

ensures that each model does not create its own reifications of a common concept.

3.3.4. Roles
In mathematics, it is common to identify the meaning of the members of a rela-

tionship by their position in the relator. That is, for a Length relation, it is under-

stood that the object whose length is being measured is stored at index 1 in each

relator, and the length of that object is stored at index 2. These implicit conven-

tions are sufficient for simple relations, but—just like record structures in most

programming languages—it is clearer and more flexible to explicitly identify the

role played by each member of a relator.

Notice that in general it is not enough to establish a correspondence between

member positions in a relation and the roles played by the elements they hold.

Not all relations have position-based parameters, or even a fixed arity (for an ex-

ample, see Section 4.3). It is thus important to identify the role played by each

member in each individual relator (instance of a relation).

To achieve this, it is not enough to link each member of a relator to its role: the

same element might be playing a different role in another relator, and there

would be no way to distinguish between them. It is not even enough to use a ter-

nary link between the member, the relator and the role, since the same element

might appear in different positions in the same relator, and play a different role

 43

for each position. With a ternary link, there would be no way to correlate the

roles played to member positions.

A better solution is to take advantage of membership reification and link each

Member pair to the role it fulfills. This attaches the role to all the information

available about the membership of an element in the relator, including its posi-

tion. The most elegant way to implement this link is to consider each role as a

classifier containing the reified membership elements that fulfill that role. Ac-

cording to this definition, the Member relation is our first role classifier represent-

ing the role of a generic nest member. All other role classifiers will expand it.

Classes are often closely related to the roles their instances play. For example,

“SEng 330 is a course” and “the SEng 330 course is taught by the teacher Piotr”

are kin statements, though the first one uses “course” as a normal classifier and

the second as a role.17 To relate a classifier to roles its members play we will use

the Enact relation, linking the role to the classifier. If the definition of the role

does not add any extra information to the classifier it enacts, we will use the En-

act default relation—there should be no more than one default role for any given

classifier. A default role is most useful when all members of a class can play only

one role in the relationship.

Figure 3-16 demonstrates the role-playing mechanisms by showing two relation-

ships: “the course SEng 330 is taught by the teacher Piotr” (relator a) and “SEng

330 requires CSc 115” (relator b). In a, SEng 330 plays the default role of a course,

since there’s no advantage to expanding it to “the course being taught”. In b, it is

critical to distinguish between the two roles (both played by courses), since one is

the required course, while the other is the requiring one. Using the default

course role in this relationship would leave us unable to disambiguate, since the

relationship is not ordered.

17 Some metamodels do not make this fine distinction; see Appendix C.4 for an explanation of the
problems that occur when “normal” classifiers are also used as roles.

 44

: Member

: Member

: Member

: Member

: Classifiers

Courses

SEng 330

Piotr

a Teach

: Roles

Course role

Enact default

: Roles

Teacher

: Classifiers

People

Enact

CSc 115

b Require

: Roles

Requiring course

: Roles

Required course

Enact

Enact

Figure 3-16. Example of relationships tagged with roles

Figure 3-16 is accurate but too complicated to be easily readable. To simplify

graphical representation of roles, we introduce two new shorthands. Figure 3-17

shows a quick way to indicate the role played by a containment relationship,

which can be used to compact diagrams of n-ary relationships with role-playing

elements. Figure 3-18 proposes a further refinement of the notation for unor-

dered binary relationships, where members are distinguished by the roles they

play. (This last notation can be combined with the relationship-arrow notation to

represent an ordered binary relationship with members that play roles.)

BA R

B

A Domains::Member

::R

≡

Figure 3-17. Membership role-playing shorthand

 45

R BA
P Q ≡ Q P

::R

A B

Figure 3-18. Unordered binary role-playing relationship shorthand

Using this new notation, and assuming that the classifiers, relations and roles

referenced are defined elsewhere, we can transform Figure 3-16 into the much

simpler Figure 3-19.

: Courses

SEng 330

: People

Piotr

: Courses

CSc 115
Teach

Teacher

Course role
Require

Requiring course

Required course

Figure 3-19. Example of role-playing relationships using compact notation

Of course, all the relations in the NUO actually have totally ordered relators,

where the meaning of a member is indicated by its position. To integrate this

approach with roles, the Play Role by Index ternary relation assigns a role to each

index of a relation. Since Play Role by Index uses indexed parameters as well, we

can use it to describe the roles played by the members of its own relators (Figure

3-20). Section 3.4.2 shows how roles played in actual relators are inferred from

these statements about relations.

Play Role by Index

1

: Roles

Relation

2

: Roles

Index

3

: Roles

Role
Roles

Relations

Domains::Integers

Enact default

Enact default

Enact

Figure 3-20. Roles played by members of Play Role by Index relators

 46
3.3.5. Subtypes
All metamodels that support types (whether in the object or semantic layer) also

support type specialization, so it is worthwhile to add the idea of subtypes to the

NUO. A subtype A that specializes a type B may add further characteristics to its

instances, but every member of A is also a valid member of B. With our defini-

tion of classes, a subclass is merely a subset of the union of its superclasses. We

introduce a new binary relation Extend that indicates specialization, relating the

subclass to the superclass.

Binary Relations Extend

Figure 3-21. The Extend relation

We can now use the relation to indicate that Extend is actually a specialization of

Expand, the relation that indicates that one set is the subset of another. 18 We

could use the previously introduced relationship shorthand but, since specializa-

tion is used so often, we introduce an even more compact abbreviation inspired

by UML ([OMG01][Fow00]). All parts of Figure 3-22 are equivalent.

(a) (b) (c)

Extend

Expand

Extend

Expand

Extend

Extend

Expand

≡ ≡

Figure 3-22. Extend relationship example and shorthand

With extension at our disposal, we can now begin building the “top” of the

NUO’s inheritance hierarchy. First, we need a top-level classifier that contains

all elements in our system; this is useful when writing constraints (see Section 3.4)

and queries. Most of the good names are already taken: object, entity, concept,

resource, topic, subject, etc. all have existing connotations. To avoid preconcep-

18 The difference between the two relations is explained in Section 3.4.4. For now, you can con-
sider them to be equivalent.

 47

tions, the class of all elements in the model is called Ideas. Every element is im-

plicitly a member, so we do not indicate this membership in the diagrams. Simi-

larly, Nests are a subclass of Ideas, and every nest in the diagram (sharp-cornered

rectangle) is implicitly a member. Finally, Classifiers are a subclass of Nests, and

all of these are instances of Classifiers.

ClassifiersIdeas Nests

Figure 3-23. Top of the inheritance hierarchy: Ideas, Nests and Classifiers

With this basis in place, we can now attach a hierarchy of relation metaclasses

such as Relations, Binary Relations, etc. Instances of those classes will be rela-

tions,19 which can also be seen as classes of relationships. These relations will

contain the tuples that define the individual relationships.

TransitiveRelations

ExtendExpand
BinaryRelationsRelations

::Classifiers

Figure 3-24. Relations inheritance hierarchy

3.3.6. Names
Humans like naming things: having a name makes it easier to refer to the object.

The labels in the graphical representation allow us to refer to the nests and atoms

in the text but are not part of the model itself. It would thus be useful to intro-

duce a standard intra-model naming mechanism, to simplify queries on and

presentation of models.

Two principles guide the naïve design. First, each object may have multiple

names and a name can denote multiple objects (for unique identification, see Sec-

tion 3.3.7). It is thus inappropriate to store a single name within the object itself;

19 See Section C.1 for a discussion about the use of instances versus subclasses in this case.

 48

the relationship should be made explicit. Second, a name is not the same as its

representation. For example, a student’s first name might be Peter. If the stu-

dent goes to a conference in France, though, he would be called Pierre—the

French translation of Peter. Intuitively, the student has only one first name, but it

may be represented in different ways depending on context. Figure 3-25 shows a

model of this situation, alluding to the ontology of scopes introduced as part of

the Topic Maps mapping in Section 4.3.

Student Student's
first name

"Peter"

"Pierre"

Denote

: Scopes

English scope

: Scopes

French scope

: Languages

English

: Languages

French

Constrain

Constrain

: Represent

: Represent

Figure 3-25. A name with scoped representations

Most of the time, we are not worried about multiple representations and do not

bother scoping the Represent relationships, though we must still use a mediator

between the string representation and the idea being named for consistency’s

sake. Figure 3-26a shows a typical usage of naming. Note the low-key introduc-

tion of the Denote and Represent (non-transitive) binary relations.20 Since naming

ideas is a very common activity, a very compact shorthand version is demon-

strated in Figure 3-26b. The form is purposely close to the labelled notation since

the semantics are very similar. The only difference is that names are recorded

within the model, while labels are diagrammatic artefacts.

20 See Section C.3 for further details about these particular relations.

 49

(a) (b)

Peter "Peter"Denote Represent Peter≡

Figure 3-26. Simple naming example and shorthand

Now that names are available to us, we naturally want to name all the standard

ideas introduced so far. This is straightforward, though it is interesting to see

how the Denote relation names itself (Figure 3-27).

::Binary Relations Denote "Denote"Represent

Figure 3-27. Naming the Denote relation

A final interesting example of naming is the situation presented by Lewis Carroll

in the excerpt below [Car60]:

“[…] The name of the song is called ‘Haddock’s Eyes’.”
“Oh, that’s the name of the song, is it?” Alice said, trying to feel inter-

ested.
“No, you don’t understand,” the Knight said, looking a little vexed.

“That’s what the name is called. The name really is ‘The Aged Aged
Man’.”

“Then I ought to have said ‘That’s what the song is called’?” Alice
corrected herself.

“No, you oughtn’t: that’s quite another thing! The song is called
‘Ways and Means’: but that’s only what it’s called, you know!”

“Well, what is the song, then?” said Alice, who was by this time com-
pletely bewildered.

“I was coming to that,” the Knight said. “The song really is ‘A-
sitting On A Gate’: and the tune’s my own invention.”

Figure 3-28 shows a model that matches this description. Note the strange usage

of strings for both the name of the song and the song itself. Indeed, as [Nag56]

noted, this last is almost certainly a mistake, but our ontology rises to the chal-

lenge and allows us to represent even semantically suspect declarations.

 50

Represent

Denote

Represent

Denote

: Classifiers

Names "The Aged
Aged Man"

"A-Sitting
On A Gate"

"Haddock's
Eyes"

"Ways and
Means"

Figure 3-28. A model of the names of “A-Sitting On A Gate”

3.3.7. Identifiers
In Section 3.2.3 we decided to use surrogate keys to identify our ideas; how then

do we represent external identifiers, such as URIs? The key idea is that URIs are

just names that are meant to be independent of context. While we may not en-

tirely trust this, it is useful to indicate that a name is supposed to be unambigu-

ous. To this end, we refine the naming relation hierarchy tacitly introduced in

the previous section as shown in Figure 3-29, where each relation is annotated

with its intended meaning.

 51

RepresentDenote

Identify

Describe

Indicate
to point out
or point to

to bring clearly
before the mind,
to correspond to
in essence

to represent or
give an account
of in words
to represent by a
figure, model, or
picture

to stand for,
to designate

to unambiguously
establish the essential
character of

Embody

to make an
abstraction
concrete or
perceptible

...

Figure 3-29. A hierarchy of indication relations

Starting out with Denote and Represent, we create a common supertype Indicate

since the purpose of both relations is to have one idea point to another. The dif-

ference is that Denote is meant for symbols (or other things) that are arbitrarily

assigned a meaning, whereas Represent is for things that indicate through some

replication of essential characteristics of the referent. The distinction may not

always be clear-cut in practice, so it is acceptable to have one idea Indicate an-

other without being either a name (Denote) or a representation (Represent).

The subtypes of Represent show some of the possible ways to represent an object.

They are not included in the ontology since there is no limit to the variations and

the semantic details do not add useful information to most models.

Finally, the Identify relation is a subtype of Indicate. It can be used directly, to
imply that all items pointed to by the identifier are supposed to be the same one.
It can also be used in conjunction with Denote and Represent to combine their se-
mantics, since both denotations and representations could be sufficiently unam-
biguous to serve as identifiers. For example, since URIs (should) be unambigu-

 52

ous, and a string represents a unique URI, a relationship between a URI and its
referent could be modeled as in

Figure 3-30. Note that in this model a URI is considered as an abstract name with

a string embodiment.21

UVic web
site

: Denote
: Identify

<http://www.uvic.ca/>

: Represent
: Identify

"http://www.uvic.ca/"

Figure 3-30. Example of identification by URI

While by no means complete, this simple hierarchy of indication is flexible

enough to extract some useful common meaning from the various denotation

semantics employed by other metamodels.22

3.4. Inferences and Validation
All metamodels restrict the structure of their models by virtue of the basic defini-

tions of the elements. For example, in our metamodel, it is an axiom that an

atom cannot contain any elements. However, it is often useful to impose further

constraints on specific models. These validity constraints are the traditional

province of schema languages (e.g., XML Schema [TB+01][BM01], RELAX-NG

[CM01], RDFS [BG02], TMCL [Pep01]).

Constraints go hand-in-hand with inference, the ability to derive new knowledge

from an information base and some rules. Where a constraint checks whether

information fits some pattern, inference uses the pattern to create the extra in-

formation if necessary. Both constraints and validation can often be expressed

using the same logic rules; the only difference is how they are applied. Queries

are also closely related to this topic, since they can be construed as constraint

21 While technically URIs differ from URI references, which allow for fragments and relative
forms, this thesis doesn’t apply this distinction and uses “URIs” to cover all these concepts.
22 See Section C.3 for further discussion of these relations and how they apply to the web.

 53

predicates used to select pieces of information from the model, or as inference

patterns that create new relationships between existing information.

The Braque metamodel does not specify formal constraint, inference or query

techniques. Nonetheless, the graphical notation includes some symbols for hint-

ing at the domain and range of relations and specifying the roles that members of

their instances play. Some of the NUO relations also have special constraints that

are worth noting, though the metamodel lacks mechanisms to automatically en-

force them at this time. The constraints on the metatypes that can participate in

an Extend relationship are especially complex.

All constraints are expressed in formal logic notation, using only the standard

quantification, conjunction, disjunction and membership operators. We add a

shorthand notation for indexed relation members since they appear so often in

the constraints. Equation 3-1 show the definition for binary relations, higher ari-

ties follow the same pattern.

()yrxrRrryxR =∧=∧∈∃≡]2[]1[:),(

Equation 3-1. Binary relation formula shorthand

We also use x[n] to refer to the n’th member of the nest x, with the first member

having index 1. If the nest is not totally ordered, then x[n] is satisfied by all ele-

ments that can trace a path of immediate precedents of length n-1 back to an

elements with no precedents. To put it another way, if all maximal totally or-

dered lists are extracted from nest (such that no element could be inserted be-

tween any pair of elements without breaking the total order), then the n’th ele-

ment of each list satisfies x[n].

3.4.1. Relation Hints
Thus far, three kinds of arrows were introduced in the graphical notation: mem-

bership, relationship and extension. The first two can also be drawn dashed be-

tween nests (usually between classifiers) to indicate that these nests’ members

 54

are likely to enter into the corresponding relationship.23 The extremities of the

relationship hint arrow can optionally be adorned with the names of the roles

played by members that appear at the given end. These are translated into in-

stances of Play Role by Index as shown in Appendix A. If no role is specified at an

extremity, it’s safe to assume that members play the default role for the class at

that end. It is also possible to specify multiplicity restrictions, à la UML.

Figure 3-31 shows an example that hints graphically at the domain and range

constraints on some of the relations introduced above. The dashed membership

arrow shows that the members of Nests will contain members of Ideas (in other

words, nests contain ideas). The dashed Member arrow duplicates this informa-

tion, since the Member relation mirrors actual nest membership. The dashed Rep-

resent arrow shows that any idea can represent any other. These are the widest

possible domain/range constraints and the default for any relation, and would

not normally be drawn explicitly. However, in this figure, we’ve also added ex-

plicit roles for the relation. The dashed Expand arrow also shows roles, but limits

both the domain and range of the Expand relation to nests.

: Classifiers

::Ideas

: Classifiers

::Nests
Represent Expand

Member
Contained Container

Original

Representation Subclass

Superclass

Figure 3-31. Example of relation hints

The relation hints are similar to UML associations: they are drawn between clas-

sifiers and refer to an entire relation class of underlying relators. They differ in

that the constraints are not strict, and the relation itself still needs to be defined

separately. Still, the hints are informative and easy to read, so we will make

some use of them in the following chapter when describing more complex on-

tologies.

23 There is no need to provide a special hint notation for the extension arrow, since its domain
and range are already fixed (see Section 3.4.4).

 55
3.4.2. Relation Constraints
This section examines some of the constraints applicable to the relations intro-

duced in the NUO.

First, we can state that binary relations consist of pairs (Equation 3-2). In the

constraint, we need to use a classifier and a relation that have not yet been de-

fined. Ordered Nests is a refinement of Nests that contains all nests that are totally

ordered, and the Size binary relation associates each nest to the quantity of its

members (which may be infinite).









∈∧⇒
∈

∀⇒

∈∀

Nests Ordered)2,Size(:

Relations Binary:

xx
fxx

ff

Equation 3-2. Binary relations consist of pairs

We follow up by stating the mathematical rule for transitive relations (Equation

3-3).

()),(
),(),(

Relations Transitive:,,,

zxr
zyryxr

rzyxr

⇒









∧∧
∈

∀

Equation 3-3. Transitive relation rule

The rule for reflexive relations (Equation 3-4) requires us to define a new relation

Domain that associates a reflexive binary relation with the nest of ideas that can

participate in the relation. To avoid the question of what happens if a relation

has multiple domains, we further define Domain to be an instance of Functions

whose members are allowed only one value for any given key (Equation 3-5).

()),(
),Domain(

Relations Reflexive:,,

xxr
cxcr

rxrc

⇒









∈∧∧
∈

∀

Equation 3-4. Reflexive relations rule

 56

()zy
zxryxr

rzyxr

=⇒









∧∧
∈

∀),(),(
Functions:,,,

Equation 3-5. Functions have only one value for each key

Identify is another example of a function, since identifiers are supposed to be

global and denote at most one idea. As this assumption may not always turn out

to be right, it would be wise to apply this rule selectively.

Completing our trio of common relation subtypes, we define symmetric relations.

Instead of doing so directly, we first introduce the Invert relation, whose in-

stances link a binary relation to its inverse, switching the order of members of

each pair (Equation 3-6). A symmetric relation is then one that inverts itself

(Equation 3-7). Naturally, Invert is itself symmetric.

()
()

() 






⇒
∀

⇔

∀

),(
:,

Invert:,

xys
r(x,y)yx

(r,s)sr

Equation 3-6. Inverse of a binary relation

()
()),Invert(

Relations Symmetric:
rr

rr
⇔

∈∀

Equation 3-7. Symmetric relations rule

As promised earlier, Equation 3-8 shows how Play Role by Index statements con-

nect indexed members to roles and vice-versa.

()
() 






















∈⇔
=∧=∧∈∀

⇒∀
os

tsisrtst
oir

oir]1[]Member[:,
),,(Index byRole Play

:,,

Equation 3-8. Relating roles and indices

This leaves only a few loose ends to tie up. Equation 3-9 states the meaning of

expansion (similar to the usual subset operator) and formalizes the definition of

the Ideas nest from Section 3.3.3.

 57

()






∈⇒∈∀⇔∀ yaxaa
yxyx :

),Expand(:, ∀ 





 ⇒∈

)Ideas,Expand(
Nests: x

xx

Equation 3-9. Rules related to nest expansion

3.4.3. Metatype Compatibility Problem
Our metamodel so far still lacks the constraints necessary to prevent the situation

depicted in Figure 3-32, where a ternary relation extends a binary one.

::Binary Relations

::Relations

::Classifiers

::Ternary Relations

Identify

Teach

Figure 3-32. Example of incompatible metatypes

While in this example ternary and binary relations would have conflicting con-

straints on the nature of their members that would force the Teach relation to be

empty, this is not always the case. To state the problem more generally, let us

define metatypes as classifiers whose instances are classifiers, or equivalently as

a classifier that expands Classifiers (assuming that Expand is reflexive) (Equation

3-10).

() ()()
())sClassifier,Expand(sClassifier

sClassifier:sClassifierMetatypes
mm

cmccmm
∧∈⇔

∈⇒∈∀∧∈⇔∈

Equation 3-10. Definition of metatypes

Then sometimes the instances of two metatypes are simply incompatible and

should not be allowed to extend each other—Chapter 4 provides some more ex-

amples. Is there some general constraint we can enforce to invalidate these un-

desirable extensions?

A way to sidestep the problem completely would be to have incompatible

metatypes not extending Classifiers, but rather introducing a new class-like con-

cept with a matching new extension-like relation. In the example above, this

 58

would amount to removing all the extension relationships and defining new rela-

tions called Extend-binary-relation and Extend-ternary-relation that would only ap-

ply to instances of the appropriate relation metatypes. This approach leads to a

proliferation of almost-but-not-quite-the-same relation definitions and fails to

express the commonalities in the meaning of the various extension relations. It is

not appropriate for an ontology whose purpose is to integrate disparate meta-

models into a common framework.

The next idea that comes to mind is simply to forbid extension relationships be-

tween classifiers with different metatypes. This would mean that if C1 extends C2,

then C1 and C2 must have the same metatypes. However, such a rule would pro-

hibit the situation [Hay02b] shown in Figure 3-33, which clearly makes sense.

Infinite
classes

Finite
classes

Integers Integers
0..10

::Classifiers

Figure 3-33. Example of valid cross-metatype inheritance

Requiring the metatypes to match exactly is too strong. Taking a look at UML,

we see that the equivalent rule in [OMG01], p. 2-61, Section 2.5.3.20, paragraph 5

is:

A GeneralizableElement may only be a child of a GeneralizableElement of
the same kind.

This works fine for the UML M1 model (with metatypes from M2), but would fail

if the example above were restated in UML, since Finite classes does not extend

Infinite classes. There are even valid examples where the metatypes’ extension

 59

relationship goes in the inverse direction of their member classifiers’ (e.g., Figure

3-34).

Naive::
Classifiers

Naive::
Domains

Domains::
NumbersIntegers

Figure 3-34. Metatypes inverting instances’ extension

3.4.4. Metatype Constraint
The solution to the metatype compatibility problem adopted in the Braque

metamodel is to differentiate between classifier extension and mere set expan-

sion. Expansion is a purely structural feature that only implies that the members

of the child will also be in the parent. It can be expressed between any two nests.

Extension is the stronger statement that the child classifier is a specialization of

the parent classifier. Not only can the child’s members be used wherever in-

stances of the parent are expected (the Liskov Substitution Principle [Lis88]), but

the intent of the child classifier is a refinement of the parent’s intent.

For most classifiers, the distinction is slim with no concrete consequences in the

model. For metatypes, though, we can take advantage of this difference by re-

quiring that, in an extension relationship, the classifiers’ metatypes roughly

match, up to extension. Equation 3-12 expresses the constraint, assuming that

the extension relation is transitive and reflexive (Equation 3-11).

)),(Extend()sClassifier(:
)),(Extend()),Extend(),(Extend(:,,

cccc
zxzyyxzyx

⇒∈∀
⇒∧∀

Equation 3-11. Extension is transitive and reflexive

 60

()


































 ∧∈∃⇒








∈
∧∈∀

∧





 ∧∈∃⇒








∈
∧∈∀

⇒

∀

)(Extend:

Metatypes:

)(Extend:

Metatypes:

)Extend(:,

12

11
1

2

22
2

21

22
2

1

11
1

2121

,mm
mcm

m
mcm

,mm
mcm

m
mcm

,cccc

Equation 3-12. The Braque metatype constraint

The effect of the metatype constraint is to partition metatypes into connected

components based on the Extend relation. Extension is allowed only when both

classes belong to the same connected components. Expand relationships can be

used as a kind of firebreak in the metatype hierarchy, separating it into inde-

pendent regions while preserving the transitive promotion of instances into par-

ent types.

The Braque metatype constraint is inspired by the UML generalization rule

quoted above, but there are some important differences. First, since UML en-

forces single classification, its rule can refer to a class’ unique metatype, whereas

in Braque a class may have any number of metatypes. For this reason, the

metatype constraint must be satisfied for every metatype of each classifier par-

ticipating in the extension relationship. Second, for each metatype of one classi-

fier, it is sufficient to find any one metatype of the other classifier that is ex-

tended by the first one. This relaxes the UML rule in two ways. The child classi-

fier’s metatype does not need to be a subtype of the parent’s metatype—instead,

they must share a common supertype. We also get to pick any of the child classi-

fier’s metatypes to satisfy the condition, which could be any parent (by extension

or expansion) of the “primary” one. These relaxations dispose of the objections

levelled against the UML rule.

 61
3.4.5. Constraining Naïve Metatypes
Before changing our ontology to take advantage of this new rule, let us introduce

a new shorthand graphical notation to express the Expand relationship (Figure

3-35).

≡A B A BNaive::Expand

Figure 3-35. Expand relationship shorthand

We can now model the relation topics in our ontology as shown in Figure 3-36.

Note that with Binary Relations expanding Relations, rather than extending it, the

situation of Figure 3-32 is prevented by the metatype constraint, since there is no

common metatype extended by Binary Relations and expanded by Ternary Rela-

tions.

::Classifiers

Extend

: Classifiers

Relations

Expand

: Classifiers

Transitive Relations

: Classifiers

Reflexive Relations

: Classifiers

Symmetric Relations

: Classifiers

Binary Relations

Figure 3-36. Improved model of naïve relations

Another interesting question is whether the Transitive Relations metatype should

extend or expand Binary Relations. If we put in a firebreak with Expand, then

transitive relations will be unable to extend intransitive ones, and vice-versa.

The first should clearly be possible, but can we find a valid example of an intran-

sitive relation that extends a transitive one? Yes: define R and R∆ as per

 62

Equation 3-13. R is transitive while R∆ is not, yet R∆ could be said to extend R

since all member pairs of R∆ are also members of R.

0,),(
),(

>∆<<∆−≡
<≡

∆ yxyyxR
yxyxR

Equation 3-13. Intransitive relation extending a transitive one

Transitive relations are thus truly a refinement of binary relations, since their in-

stances can cross-specialize. Similar arguments hold for symmetric and reflexive

relations. Equation 3-14 expresses my hypothesis that if two metatypes are ex-

tension-compatible in one direction then the reverse direction must be valid as

well. This hypothesis is plausible but unproven. Should it turn out to be false,

the metatype constraint would have to be revised since, as written, it is inde-

pendent of the direction of extension between metatypes.







∧

∈∧∈∃⇒








∧
∈∧∈∃

),Extend(:,

),Extend(:,,,

12

2211
21

21

2211
2121

dd
mdmddd

cc
mcmcccmm

Equation 3-14. Extension compatibility symmetry hypothesis

3.5. Issues of Logic
Since Braque is an information model, not just a data model, it’s important to de-

fine the meaning of its structures. As noted in sections 3.2.1 and 3.2.2, atoms

reify arbitrary things while nests reify relationships between things. When put-

ting ideas into a nest, it’s always a relationship between the reified things that is

being asserted, not between the idea objects themselves. To assert a relationship

between the reifying constructs (for example, their relationship to the referent, or

to the underlying programming language’s type system), we’d need to reify

them in turn.

It is very important to understand that reifying a thing does not assert its exis-

tence. Reifying a unicorn doesn’t mean that we believe in mythological creatures,

and reifying the relationship “Peter has a M.Sc.” does not make it true. This way,

 63

we can talk about things we don’t necessarily believe, or even assert that a rela-

tionship is not true. If every relationship in the model were always asserted, this

last would result in a contradiction.

How does one make assertions, then? Braque does not enforce any specific

mechanism or logic, but the structures supplied should be sufficient to build on-

tologies of truth. One simple approach would be to gather all trusted relation-

ships into a single set, then limit further queries to only use information from

that set. More complex ontologies might assign truth probabilities to relation-

ships, or perform time-sensitive reasoning by considering validity intervals for

assertions. All kinds of mechanisms can be implemented easily since universal

referenceability makes it trivial to talk about relationships of relationships.

It is also worthwhile to discuss how membership reification fits into logical in-

terpretation. Asserting a relationship does not automatically assert its reified

membership relationships and vice-versa; the idea of a statement being true is

separate from assertions about its composition. While Braque ensures that the

membership reifications share the lifecycle of their parent nest, each relationship

can be asserted independently of the others.

Now that we understand the structure and meaning of the Braque metamodel

we can describe how to use it to integrate other metamodels.

 64

4. Integration
This chapter proposes mappings that integrate three currently popular semantic

web metamodels into the Braque metamodel, and in so doing evaluates the ex-

pressive power of Braque. The mappings preserve all the original information

and can easily be reversed to recover the original model.24 However, exporting

information to a metamodel other than the one it was originally imported from

goes beyond integration and is therefore beyond the scope of this thesis. Such a

feature would enable translation between metamodels using Braque as a middle

ground and is an obvious target for future development.

The mappings exclude all schema and constraint information, since the NUO

does not yet include such facilities. They also exclude (natural) language scoping

constructs—though they appear in all three metamodels being integrated—since

they are difficult to align and not critical to the information integration effort.

Sections 4.1, 4.2 and 4.3 introduce the three mappings, while section 4.4 provides

a larger example of integration. For easy reference, Appendix B collects the onto-

logical structures needed by the mappings that are introduced in this chapter.

4.1. Extensible Markup Language
The Extensible Markup Language (XML) [BPS00] is a set of rules for defining tex-

tual formats for structured data storage. It comes from a tradition of markup

languages (such as HTML [RHJ99]), themselves designed according to the rules

of XML’s precursor SGML [ISO86]. XML’s rules are a vast simplification of

SGML, which is widely believed to be responsible for XML’s widespread popu-

larity.

While XML imposes some minimum well-formedness rules on its markup lan-

guages, it does not specify any common semantics for them [Cov98]. This means

24 Minor syntactical details of the serialization formats (such as white space) are purposely dis-
carded, since the goal is a mapping between models, not their representations.

 65

that not only does each dialect have its own vocabulary, but it also assigns its

own interpretation to XML’s primitive features. In terms of the IMI Reference

Model, XML does not (and cannot) define a generic object layer, so each applica-

tion must make up its own.

This lack of semantics seriously hampers the integration of information from

XML documents into a common object-oriented metamodel. In this thesis, I take

the less ambitious route of only integrating the basic structure of XML docu-

ments without trying to decode its meaning. An application with dialect-specific

knowledge can then transform this structural model into the information actually

contained in the document. Other approaches to exposing the semantics of XML

documents are summarized in Section 5.2.

4.1.1. Basic Structure of XML Documents
All XML documents follow a basic tree structure of nested elements intermixed

with free-form text. The elements and text are totally ordered, and each element

is unique—there’s no way to escape the tree structure. Every element also has

any number of attributes, each associating a simple string value to the element.

Both elements and attributes are labeled. (A full treatment of the complex nam-

ing system is deferred to the next section.) Each element can have at most one

attribute for any given label.

Based on this description, XML documents are normally represented as a labeled

tree. Each vertex represents an element, and is linked by (directed) edges to its

attribute values and children elements. The attribute edges get the attribute la-

bels, since the values are always strings and don’t need further labeling. What

about children elements, though? Should the label go on the edge, indicating the

role played by the child, or should it go on the element itself, indicating its type?

Without further information (in the form of extra annotations or a schema), the

decision is arbitrary. The mapping to Braque considers element labels as names

 66

of element types, but could just as easily interpret them to be role types, used for

classifying the membership relationships between an element and its children.

In any case, XML’s tree-shaped structure fits the Braque metamodel perfectly.

XML elements are nests with list characteristics (totally ordered and accepting

duplicates25). Elements contain other elements and strings. Attributes are binary

relationships between the element and the assigned string value. Figure 4-1

demonstrates the result of mapping a small XML document into Braque, with a

not uncommon liberal treatment of white space.

<body style="quote">
 <i>Then</i> he
 said freeze!
</body>

: body "quote"style

: i

"he said"

: b

"Then"

"freeze!"

Figure 4-1. Mapping of sample XML document

The corresponding element and attribute types are defined in Figure 4-2. The

types are instances of Element Types and Attribute Types, two metatypes that ex-

pand Classifiers and Binary Relations, respectively. While XML itself does not de-

fine type inheritance, it seems prudent to partition XML’s element and attribute

types from other classifiers and binary relations in preparation for the introduc-

tion of XML schema facilities in the future. All elements and attributes are also

aggregated into the Elements and Attributes nests for convenience, as stated by

Equation 4-1.

25 Elements are unique, but the same string fragment may occur more than once inside an ele-
ment.

 67

body i b style

Element
Types

Elements

Naive::
Classifiers

Attributes

Attribute
Types

Naive::
Binary Relations

Figure 4-2. Sample XML element and attribute types

()
())Elements,Expand(

TypesElement :
t

tt
⇒

∈∀ ()
())Attributes,Expand(

Types Attribute:
t

tt
⇒

∈∀

Equation 4-1. Aggregation of XML elements and attributes

Thanks to totally ordered nests, the basic structure of XML comes through very

cleanly into Braque, and the mapping would be trivial were we to stop here.

However, the surprisingly complex structure of XML names must also be

mapped.

4.1.2. XML Names
Superficially, element and attribute names in XML appear to be quite simple: a

simple string of characters denotes each type. Problems only start to appear

when different people want to use the same tag name to mean different things,

since this can confuse an application that expects “<p>” to indicate an HTML

paragraph instead of a personal contact entry in an address book. The usual so-

lution—to partition names into disjoint namespaces—is the one developed in the

XML Namespaces recommendation [BHL99]. While this recommendation is

separate from the base XML standard, it is very commonly used and any map-

ping of XML that does not support XML Namespaces would not be worth using.

This section builds one possible model of XML Namespaces and hooks it up to

the element and attribute types created above.

XML names are not simple strings; they have internal structure. First, the same

string can be used to denote both an element type and an attribute type without

 68

conflict. The name represented by that string depends on whether it was en-

countered in an element or an attribute context. Second, a name can be simple or

qualified. A simple name is represented by a simple string and the afore-

mentioned context. A qualified name is a pair consisting of a simple string—the

“local part”—and a URI that identifies the namespace. The model so far is

shown in Figure 4-3.

Qualified
Names

Domains::
StringsLocal part

1

Element
Type Names

Attribute
Type Names

Simple
Names

{abstract}
Names

Figure 4-3. Four kinds of XML names

4.1.3. XML Namespaces
We must now model namespaces. Instead of just associating qualified names to

their namespace URI, this ontology models a namespace as a concept in its own

right, a mildly controversial approach since not everybody agrees that XML

namespaces “exist” [Bou00]. A top-level namespace, then, is a set of qualified

names identified by a URI (Figure 4-4).

Top
Namespaces

Naive::Denote
Naive::Identify

Domains::
URIs

Qualified
Names

Figure 4-4. Top level XML namespaces

What about simple names? Simple element type names are not considered to be

in any namespace. Simple attribute type names, on the other hand, belong to a

namespace identified by the type of the element they are decorating. For exam-

ple, in “<p a=’1’>” and “<b a=’x’>”, there are two separate attribute types called

“a”. Thus, each simple attribute type name belongs to a local attribute name-

space (Figure 4-5).

 69

Local Attribute
NamespacesNaive::Identify

Element Types Simple
Names

Attribute
Type Names

Figure 4-5. Local attribute XML namespaces

Through generalization, we arrive at the generic concept of an XML namespace

(Figure 4-6) and a statement about the distinguishing characteristics of XML

names (Equation 4-2).

{abstract}
Namespaces

{abstract}
Names

1

Local Attribute
Namespaces

Top
Namespaces

Figure 4-6. XML namespaces

() 























=⇒












































∧
∧∈∧∈

∧∈∧∈
∧∈





∈

∃∀

yx
sy
sx

nynx
tytx

n
t

tsnyx

),(part Local
),(part Local

Namespaces
Names Type Attribute

,Names TypeElement

:,,:,

Equation 4-2. XML names uniqueness constraint

Completing the ontology, qualified element type names identify element types,

while simple element type names are potentially ambiguous and merely denote

them. Both simple and qualified attribute type names identify attribute types.

The full XML integration model is reproduced in Appendix B, and Section 4.4

explores the mapping of a larger sample document.

4.2. Resource Description Framework
The Resource Description Framework (RDF) is a simple metamodel for defining

and exchanging information on the semantic web. It is championed by Tim

 70

Berners-Lee and is hence likely to remain relevant to knowledge integration ef-

forts despite its many problems.

RDF is still under development. The base model and syntax recommendation

[LS99] has been available for a few years, but it is undergoing heavy revision

[Bec02][KC02] by the RDF Core workgroup (http://www.w3.org/2001/sw/RDFCore/)

and there are many outstanding issues still left to be resolved. The RDF Schema

(RDFS) draft [BG02] specifies a small upper ontology on top of RDF, but it too is

a work in progress and has never been officially published. Finally, an RDF

Model Theory [Hay02a] that formally defines the semantics of RDF and RDFS

constructs is also under development.

Consequently, while the foundations of RDF are fairly solid and well understood,

the more advanced features (that nonetheless belong to the object layer of the IMI

Reference Model) are still very much a moving target. This section provides a

full mapping from RDF and RDFS (minus constraints and language tagging) into

the Braque metamodel according to all documents available at time of writing

and supplemented by my own interpretation where necessary.

4.2.1. Basic Structure of RDF
At its core, RDF has a simple, domain-neutral metamodel. A model consists of

an unordered set of statements. Each statement is a triple that relates a subject

and an object through a predicate. A small sample model in NTriples format

([GB02] Section 3, work in progress as usual) is given in Figure 4-7. Other for-

mats exist (including an XML serialization and a directed graph representation

[KC02]) but are not of interest here.

http://www.w3.org/2001/sw/RDFCore/

 71
<http://www.ideanest.com/research/Thesis.doc>
<http://purl.org/dc/elements/1.1/creator>
“Piotr Kaminski” .

<http://www.ideanest.com/research/Thesis.doc>
<http://purl.org/dc/elements/1.1/publisher>
_:uvic .

_:uvic
<http://purl.org/dc/elements/1.1/title>
“University of Victoria” .

Figure 4-7. Sample RDF model in NTriples format

The subject of each statement is a resource. The RDF conception of a resource is

essentially that explained in Section 2.1.3, so a resource can be just about any-

thing. In the first two statements above, the subject is a copy of this thesis docu-

ment, while in the last statement the subject is the University of Victoria institu-

tion. Every resource in an RDF model either has a single global URI identifier

(e.g., the first two subjects), or is a “blank” resource with unique identity but no

identifier at all (e.g., the last subject). In a model, blank resources are identified

only by the relationships they enter into. In the NTriples format, each blank re-

source gets a local identifier similar to a Braque label.

Each statement’s predicate describes the relationship between the subject and the

object. It is also a resource and allowed to be blank. In the example above, the

predicates were chosen from the standard Dublin Core Metadata Element Set

(DCME) [WK+99]. DCME is not specific to RDF, so it recommends that the ob-

ject of a “creator” or “publisher” predicate be the name of the corresponding en-

tity. This recommendation was followed in the first statement, but in RDF it

looks a little strange to have a string as the creator of a document. For this reason,

the second and third statements employ an idiom more suited to RDF: the pub-

lisher is some blank resource whose title is a string.

Finally, the object of each statement is either a resource or a literal. RDF’s literals

are structured objects, not just strings. A literal may have a language tag, and

 72

can be interpreted either as a simple string or as an XML fragment.26 A literal

cannot be the subject of a statement and, at the moment, cannot be interpreted as

a typed value (e.g., an integer) though that may soon change [HMS02].

The basic RDF metamodel is amenable to a straightforward mapping into Braque.

Each statement is a binary relationship between the subject and the object; the

predicate is the relationship type (i.e., the relation). A resource is normally

mapped to an atom, unless it is used as a predicate, in which case it must be

mapped to a relation nest. Nothing more needs to be done for blank resources,

though for convenience the equivalent idea may be labelled with the same name

as was used in the NTriples document. Resources identified by a URI are ex-

pressed as described in Section 3.3.7. Literals are either strings, or are mapped

into XML structures as per Section 4.1. Literal language scoping is ignored.27

The mapping of the sample model according to these rules is shown in Figure 4-8.

26 The best reference on this interpretation of literals is [Bec02], since the structure was not yet
formalized at the time of this writing.
27 It is very strange that RDF makes language a property of the literal itself. After all, the string
itself does not have a language—only through use does it gain meaning and bring the language
into question. It seems to me that it is RDF triples that should be scoped by language, not literals.

 73

<http://www.ideanest.com/
research/Thesis.doc>

<http://purl.org/dc/
elements/1.1/creator>

<http://purl.org/dc/
elements/1.1/publisher>

"Piotr Kaminski"

Naive::Denote
Naive::Identify

Naive::Denote
Naive::Identify

Naive::Denote
Naive::Identify

uvic

<http://purl.org/dc/
elements/1.1/title>

Naive::Denote
Naive::Identify

"University of Victoria"

Figure 4-8. Mapping of sample RDF model

4.2.2. RDF Types, Properties and Values
Apart from the fundamental modeling mechanism, RDF also introduces a few

basic concepts as part of a minimal upper ontology. In theory, the basic struc-

tural mapping is sufficient to translate this ontology into Braque. In practice,

though, it is useful to embed RDF’s ontology into Braque’s NUO to facilitate in-

tegration between metamodels. This section only treats basic typing and values;

more advanced features and RDFS extensions to this ontology are covered in

later sections.

RDF introduces only two concepts to provide basic typing: Property and type.

type is a resource used as the predicate when stating the type (class) of another

resource. Property is the type of all resources that can be used as predicates. As

expected, type is of type Property. Property does not have a type at this stage,

since the Class concept is only introduced in RDFS.

 74

RDF also introduces a vaguely defined value property that is meant to “identify

the principal value (usually a string) of a property when the property value is a

structured resource.” [BG02]

Embedding these concepts in the NUO is fairly straightforward. To match the

structural mapping, Property is an extension of Binary Relations. It is an extension

rather than an expansion since there is no reason to segregate RDF properties

from other binary relations and prohibit their extension outside of the RDF on-

tology.

The type relation is a little trickier, since in Braque type is indicated through nest

membership. However, we can take advantage of membership reification to

align the two concepts. The Member relation has a container-member pair for

each member of each nest in the model, including instances of classifiers. Invert-

ing this relation, we obtain pairs of member-container. The type relation is then

an extension of this inverted relation, since it links instances to their classes.

The value relation seems to be some subset of the inverse of the Represent relation.

(This is arguable, but the definition of Represent is fairly broad.)

The basic embedding is illustrated in Figure 4-9. Both the RDF type and the im-

plied Braque membership relationships are illustrated, though we will forgo the

latter from now on. The diagram also leaves out the full URIs assigned to each

RDF resource to increase readability; the complete mapping identifies each of the

RDF(S) elements with its published URI.

Property

type

Naive::Binary Relations

Domain::ContainNaive::Invert

type

value

type

Naive::RepresentNaive::Invert

Figure 4-9. Basic RDF ontology embedding

 75

Note that this is strictly an embedding of RDF into the NUO; it does not map na-

ïve concepts back to their RDF equivalents. This reverse mapping is outside the

scope of this thesis, but we can nonetheless demonstrate that it would be easy to

add in at this level. First, we would need to merge Property and Binary Relations,

which could be done by having each extend the other. Second, we would need

to strengthen the equivalency between type and classifier membership, perhaps

with a constraint like that presented in Equation 4-3.

()







∈∧
∈⇔

∀

yx
y

yxyx
sClassifier

),type(:,

Equation 4-3. Strong RDF type mapping constraint

Creating reverse mappings increases in difficulty with the complexity of the for-

eign ontology, so we will not provide any further examples.

4.2.3. RDFS Classes, Hierarchies and Indicators
RDFS builds on RDF’s simplistic notion of typing by introducing the Class con-

cept. The type of every resource must be an instance of Class (that is, a resource

of type Class). For example, since type is of type Property, Property is of type Class.

Class is itself of type Class, giving RDFS an unstratified type model. RDFS also

insists that every resource must be the instance of at least one Class, so it intro-

duces Resource, the class of all resources. Finally, the class Literal is the class of all

literals. This last class is rather useless, since RDF cannot put a literal in the sub-

ject position of a statement to assign it the Literal type. (For a more detailed in-

vestigation of this problem, see [Hay02a] Section 3.3.1.)

The mapping is, once again, straightforward. Resource is an extension of Ideas,

Class of Classifiers and Literal of Strings. Extension is preferred to expansion for

the same reason as given in the previous section. Figure 4-10 shows this part of

the RDFS ontology and its embedding in the NUO.

 76

Class

Resource Naive::Ideas

Naive::Classifiers

typetype

Literal

type

Domains::Strings
type

RDF::Property

Figure 4-10. RDFS classes embedding

RDFS also allows one to establish refinement relationships between classes with

the subClassOf property. Its semantics match those of Extend with the exception

of the metatype constraint: RDFS allows any class to extend any other. We can

still say that subClassOf extends Extend, since the lack of a concept of expansion in

RDFS means that the metatype constraint becomes irrelevant in this context. We

must also add the RDFS rule that Resource is the top-level superclass of all classes

(Equation 4-4).







 ⇒∈

∀)Resource,(subClassOf
Class: x

xx

Equation 4-4. All RDFS classes extend Resource

subClassOf relationships can only be used between classes. To indicate refine-

ment of relations, RDFS employs a separate subPropertyOf property, presumably

to ensure that relations cannot extend classes and vice-versa. Since Braque han-

dles this problem more elegantly by enforcing the metatype constraint, we can

consider subPropertyOf as an extension of the Extend relation, which in Braque

applies to relations as well as to classes.

RDFS also has some auxiliary properties: comment links a resource to a descrip-

tion, label links a resource to a human-readable name, and seeAlso links a resource

to a related one. These can be neatly tied to the indication hierarchy of the NUO,

 77

though the simplistic comment and label relationships that connect strings directly

with the indicated object need to be expanded to include an anonymous mediat-

ing atom that reifies the description or name (Equation 4-5).

()







 ∧

∃⇒

∀

),represent(
),represent(:

),comment(:,

zy
xzz

yxyx

()







 ∧

∃⇒

∀

),represent(
),denote(:

),label(:,

zy
xzz

yxyx

Equation 4-5. Translation of RDF comments and labels

Figure 4-11 shows the RDFS properties and their embedding into the NUO.

RDF::Property

subClassOf

subPropertyOf
Naive::Extend

comment

label

seeAlso Naive::Indicate

type

Figure 4-11. RDFS properties embedding

RDFS also defines domain and range properties, used to constrain the valid end-

points of binary relations, but as mentioned in the chapter’s introduction their

mapping is outside the scope of this thesis.

4.2.4. Containers
Models often need to describe collections of items. In RDF, the easiest way to do

this is to have a group of statements sharing a subject and predicate while enu-

merating the contents of the collection in the statements’ objects. Figure 4-12

shows a sample RDF model that employs this technique, and Figure 4-13 its

mapping into a Braque model.

_:Piotr <http://xmlns.com/foaf/0.1/mbox> <mailto:piotr@ideanest.com> .
_:Piotr <http://xmlns.com/foaf/0.1/mbox> <mailto:pkaminsk@csc.uvic.ca> .
_:Piotr <http://xmlns.com/foaf/0.1/mbox> <mailto:pkaminsk@uvic.ca> .

Figure 4-12. Repeated statements create an implicit collection

 78

Piotr

foaf::mbox

foaf::mbox

foaf::mbox

<mailto:piotr@ideanest.com>

<mailto:pkaminsk@csc.uvic.ca>

<mailto:pkaminsk@uvic.ca>

Naive::Denote
Naive::Identify
Naive::Denote
Naive::Identify
Naive::Denote
Naive::Identify

Figure 4-13. Mapping of repeated statements

While convenient and appropriate in many cases, this mechanism does not allow

one to make statements about properties of the collection itself. In the above ex-

ample, it is not clear whether all the email addresses are equivalent, which one is

preferred (if any), etc. For this reason, RDF defines some standard container

types that can be used to explicitly identify a collection as such, and RDFS com-

pletes the ontology. The separation seems rather arbitrary so this section will

cover the combined RDF+RDFS container framework.

There are three container classes defined in RDF: bags, sequences and alterna-

tive lists. All three inherit from a common Container class; Figure 4-14 shows this

hierarchy.

Container

Bag Seq Alt

RDFS::subClassOf

RDFS::Class

RDF::typeRDF::typeRDF::type

RDF::type

Figure 4-14. RDF container class hierarchy

The members of a Bag are unordered and can have duplicates. The members of a

Seq are totally ordered but could still have duplicates. An Alt represents a list of

equivalent alternatives, any one of which could be chosen without affecting a

computation. There is a privileged “default” choice indicated with the predicate

_1 (see below), but the members are otherwise unordered, and duplicates are ap-

 79

parently allowed. Since RDF employs multiple classification, a resource could be

an instance of multiple container types simultaneously. It is not stated explicitly

what would be the meaning of such a container, but the simplest assumption is

that it will somehow satisfy the definitions of all its container types.

To fill its containers, RDF introduces an infinite number of ordinal membership

properties named _1, _2, and so on, that are used as predicates to assign mem-

bers to a container, ordered or not. They are all subproperties of a member prop-

erty that can be used as a predicate if the members’ order is irrelevant. All of

these properties are instances of a special ContainerMembershipProperty subclass

of Property, probably to allow them to be easily distinguished from other proper-

ties. Figure 4-15 shows the membership properties model.

member

RDFS::subClassOf

_1 _2

...

ContainerMembershipProperty

RDF::Property

RDF::type_3

RDF::type RDF::type RDF::type

RDFS::subPropertyOf

RDFS::Class

RDF::type

Figure 4-15. RDF membership properties model

We can now rewrite the example of Figure 4-12 to use a container to hold the

various email addresses. Since all my addresses are funnelled to one mailbox

they can be considered equivalent, so the Alt container is appropriate. The

piotr@ideanest.com address is preferred28 so it should be the default choice. The

resulting triples are displayed in Figure 4-16.

28 It is likely to remain valid longer than the others, since I own the domain name.

 80
_:Piotr <http://xmlns.com/foaf/0.1/mbox> _:emails .

_:emails
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#Alt> .

_:emails <http://www.w3.org/1999/02/22-rdf-syntax-ns#_1> <mailto:piotr@ideanest.com> .
_:emails <http://www.w3.org/1999/02/22-rdf-syntax-ns#_2> <mailto:pkaminsk@csc.uvic.ca> .
_:emails <http://www.w3.org/1999/02/22-rdf-syntax-ns#_3> <mailto:pkaminsk@uvic.ca> .

Figure 4-16. Explicit container holds a collection

The definitions of RDF containers have some loopholes. For example, the RDF

Model Theory cannot specify that, even if ordinal predicates are used in a Bag,

the order does not matter, or that only the _1 predicate matters in an Alt. Models

are allowed to skip ordinals, and you are not allowed to assume that you ever

know all the members of a container. It is also not (yet) defined what it means to

have a member predicate in a Seq or to have the same ordinal predicate used twice

for a container, but the RDFS constraint ontology does not have constructs pow-

erful enough to forbid these possibilities. Overall, RDF provides an excellent

demonstration of just how ugly it is to try to define collections within a labelled

directed graph.

4.2.5. Containers Embedding
Braque nests are much richer than RDF containers, so the structural embedding

does not present a problem.29 Container is clearly an extension of Nests, while

member is an extension of Member (Figure 4-17). Note that since RDF’s ordinal

properties are extensions of member their instances become elements of Member as

well.

Domains::MemberRDFS::member

RDFS::Container Naive::Nests

Figure 4-17. RDF containers embedding

29 Reversing this mapping would be much more difficult.

 81

This is sufficient to replicate the semantics of Bag. For the other two container

types, we need to ensure that the RDF ordinal relations are ordered. Since con-

veniently they are already instances of the ContainerMembershipProperty class, we

simply impose a partial order on this nest. The ordinal relations are ordered as

per the indices in their names, while the member relation is unordered. We can

now use the following constraints to impose the order of the relations onto the

membership relationships for instances of Seq (Equation 4-6) and Alt (Equation

4-7), which induces an order on the members. Note that we cannot impose the

order directly on the members since there might be duplicates, so we would not

know which copy we were referring to. (The operator “<N” is the partial order

on the members of nest N.)

() ()() 

















<⇔<⇒















∈∧∈
∧∈
∧∈

∃
⇒









=∧=∧≠
∧∈∧∈∧∈

∀

2ropertyembershipPContainerM12Member1

2211

2

1

21

2121

21
21

{member}\ropertyembershipPContainerM
{member}\ropertyembershipPContainerM

:,!

]1[]1[
membermemberSeq:,,

ssrr
srsr

s
s

ss

crcrrr
rrcrrc

Equation 4-6. RDF Seq embedding constraint

()2Member1

21

21
21]1[]1[

1_\member1_Alt:,,

rr
crcr
rrcrrc

<⇒









=∧=
∧∈∧∈∧∈

∀

Equation 4-7. RDF Alt embedding constraint

Based on these constraints, Figure 4-18 shows the mapping into Braque of the Alt

container described in Figure 4-16.

emails

Piotr

foaf::mbox

<mailto:piotr@ideanest.com>

<mailto:pkaminsk@csc.uvic.ca>

<mailto:pkaminsk@uvic.ca>

Naive::Denote
Naive::Identify
Naive::Denote
Naive::Identify
Naive::Denote
Naive::Identify

RDF::_1

RDF::_3

RDF::_2

RDF::Alt

RDF::type

Figure 4-18. Braque model of explicit RDF container

 82

While the embeddings make a perfect translation of the structure, the RDF con-

tainer semantics are not precisely replicated. RDF is a metamodel that makes the

open-world assumption, so triples missing from a model are assumed to be “un-

known” rather than “not possible”. As mentioned in the previous section, this

implies that RDF containers are never closed: it is always possible to add more

membership triples. Since Braque does not provide a global interpretation, it is

up to the agent to realize that the meaning of a missing element differs between

RDF containers and other nests. Section 6.2.1 proposes an extension to the

Braque metamodel that would allow nests to be explicitly open or closed.

4.2.6. Statements, Statings and Reification
An RDF model is composed of statements, but we must dig a little deeper to

achieve an accurate semantic mapping into Braque. An RDF document is a bag

of “statings”, each stating being the assertion of a statement. While statements

can only be distinguished according to their subject, predicate and object, each

stating is distinguishable from all others even if it asserts the same statement.

This lets RDF distinguish between different expressions of the same statement,

most often to assign provenance or other source-specific properties.

Since RDF does not enable direct references to either statements or stating, an-

other mechanism is needed to reify them. RDF defines a standard ontology for

describing statings by listing their subject, predicate and object. Confusingly,

statings are assigned the Statement type, and statements themselves are never rei-

fied. It is also not possible to specify which specific stating a Statement instance

reifies, only specify the corresponding triple and assure that the stating is unique.

This is a lazy approach to reification, where the reification is constructed manu-

ally by the user [New02].

The mapping of this lazy reification into Braque is a little strange, since Braque

eagerly reifies every relationship in the model. To correctly implement the se-

mantics of RDF reification, each instance of Statement must actually be a relation-

 83

ship for the given predicate. To maintain eager reification, each RDF relationship

must also be an instance of Statement with the proper description. This provides

a strong connection between a stating and its reification that is missing from RDF.

The mapping takes advantage of Braque’s membership reification. First, con-

sider the mapping from the reified stating to the relationship. The instance of

Statement will be the subject of three relationships, one each to specify the subject,

predicate and object of the stated triple.30 The subject and object pairs specify the

two members of the stating’s relationship and can be added directly into Member

(with the proper order). The predicate pair also specifies containment, but it is

inverted, since it relates the stating to its predicate whereas it should be the

predicate that contains the stating.

Second, consider the mapping from a relationship to its reified stating. To make

sure that all stating relationships are instances of Statement, we specify that all

properties expand Statement (Equation 4-8).

()
())Statement,Expand(

Property:
t

tt
⇒

∈∀

Equation 4-8. Properties contain statements

When all the statings are gathered, we can translate the three containment rela-

tionships back to the reified stating description properties, reversing the map-

ping above. As an extra benefit, the subject and object properties also act like

roles (as per Section 3.3.4), completing the description of the stating. Equation

4-9 formalizes the bidirectional mapping between RDF statings and their reifica-

tions.

30 RDF does not specify the meaning of the reified stating if one of these components is missing or
duplicated, but RDFS is not expressive enough to eliminate this possibility.

 84

()













































∈
∧∈
∧∈

⇔



















=∧∈
∧<

∧=∧∈
∧=∧∈

∀⇒

∈∀

predicate
object
subject

]1[Member

]1[Member
]1[Member

:,,

Statement:

3

2

1

3
1-

3

2Contain1

22

11

321

r
r
r

trr
rr

trr
trr

rrr

tt

Equation 4-9. RDF reification constraint

Another important difference between RDF and Braque is that in Braque all un-

reified statings are automatically asserted: there is no way to write down a

statement without declaring it true. On the other hand, reified statings are not

considered to be asserted—only their descriptions are held to be true. To faith-

fully model this in Braque, we introduce a new classifier called Assertion that ex-

tends RDF’s Statement. All statings read in from an RDF document are explicitly

added to the Assertion class, while statings demanded by a reified description are

only members of Statement. This maintains RDF’s distinction between asserted

and reified statings, while making it trivial to change their status—a basic task

that RDF cannot easily perform.

4.3. Topic Maps
Topic Maps have their roots in indexes, glossaries and thesauri; they are struc-

tures for organizing metadata about existing resources. They were originally

conceived as an SGML [ISO86] architectural form based on HyTime, culminating

in the ISO Topic Maps standard [ISO99], commonly called HyTM. In an effort to

ride the success of XML, Topic Maps were recast into an XML vocabulary called

XTM [PM01] by an independent organization, which was then folded back into

the ISO standard. Their tumultuous evolution is now continuing within the ISO

subcommittee SC34, which is attempting to construct a two-layer model of the

paradigm, as well as additional constraint and query languages.

 85

Perhaps due to their roots as a markup language, the abstract metamodel for

topic maps is not very well defined. Each new “standard” made changes to fun-

damental concepts, and even now there is no agreement on the exact meaning of

many traditional topic map constructs. In this section, I base my interpretation

loosely on the XTM 1.0 specification [PM01], a popular if somewhat controversial

processing model [NB01], and the current rough drafts of the Reference Model

[NB02] and Standard Application Model [GM02] produced by SC34. The details

of the mapping will definitely need to be revised as the formal topic map models

are developed, but the basic ideas seem stable enough to make an early attempt

worthwhile.

Due to its rich structure and peculiar terminology, the topic maps metamodel is

often misunderstood by people with a background in simpler metamodels, but

seems to fit well into the worldview of librarians and other information workers.

This section provides a full mapping of both the metamodel and the Topic Maps

vocabulary into Braque, with the exception of some association template propos-

als that have not been universally adopted.

I use the Linear Topic Map (LTM) notation [Gar02] to provide examples of topic

maps. Though the notation is not normative and unable to represent every fea-

ture of the metamodel, it has the advantage of being human-readable, unlike the

XML vocabulary XTM. There is unfortunately no agreed-upon graphical repre-

sentation of topic maps.

4.3.1. Basic Structure of Topic Maps
Topic Maps place a rare, even unique, emphasis on the distinction between a rei-

fication and its referent. In the Topic Maps lingo, a topic reifies its subject. Each

topic reifies a single subject, and, optimally, each subject is reified by only one

topic. Most other metamodels assume that this mapping is one-to-one and hence

consider the two concepts interchangeable, but Topic Maps place great stock in

carefully controlling the relationship between a topic and its subject (see next sec-

 86

tion for details). A topic is roughly equivalent to an idea in Braque, an object in

UML and a node in RDF, while a subject is an idea’s referent or an RDF resource.

A topic map is a set of topics and associations. An association is a special kind of

topic that reifies a relationship (which is a kind of subject). It is similar to a

Braque nest, a UML link or an RDF statement, and should not be confused with a

UML association, which models a whole class of links. Each association relates

together a number of topics, where each topic plays some role in the association.

An association’s topics are unordered, and the same topic can play any role any

number of times; the semantics are those of a bag of topic-role pairs. Naturally,

the roles are themselves topics that can participate in any capacity in other asso-

ciations.

Figure 4-19 shows an example of a very small topic map in LTM format. Each of

the first two lines introduces a new topic with the given ID. The ID is like the la-

bel in Braque graphs: it represents the identity of the topic but does not appear

in the model itself. The third line defines an association between the two topics.

It says that there is an association of type authorship between Piotr and Thesis,

where Piotr plays the role of creator and Thesis plays the role of work. Notice that

since the association’s elements are unordered, it is necessary to explicitly specify

the role of each member. (This statement implicitly introduces the topics of au-

thorship, creator and work, which are not furthered defined. It also introduces an

anonymous association, which, although it is a topic, cannot be referred to later

since it lacks an ID. This is merely a side effect of the LTM notation.)

[Piotr]
[Thesis]
authorship (Piotr : creator, Thesis : work)

Figure 4-19. Sample topic map in LTM format

We can now map the basic Topic Maps structures into Braque. Topics become

ideas—atoms for the most part. Associations become bag-type nests that contain

the member topics. The association type is a classifier that holds its instance as-

 87

sociations in the usual manner; we will have more to say about topic classifica-

tion in Section 4.3.3. The roles of an association’s members are assigned using

the mechanism introduced in Section 3.3.4, though we must work around a small

snag.

Topic map authors often consider a class and a role to be the same subject, which

causes confusion in Braque since they are both modelled as classifiers but with

different extents. To avoid this unpleasant overlap, all topics used as roles in a

topic map are assumed to actually represent classes, and are assigned a doppel-

ganger nest to take over their role responsibilities. The default role and the (as-

sumed) classifier it is derived from are linked using an Enact default relationship.

This ensures that their extents will not be confused, yet leaves the two nests

linked with a relationship that allows one to be derived from the other. It is not a

perfect solution, since a topic map that does not overlap classifiers and roles will

still get all its roles split, but it is consistent and workable. Other approaches to

the problem are explored in Appendix C.4.

With this mapping, the example above is transformed into the Braque model

shown in Figure 4-20.

Piotr Thesis

authorship

creator

work

creator role work role

work role

creator role

Enact default

Enact default

Figure 4-20. Mapping of topic map sample into Braque

4.3.2. Subject Identification
Associations relate topics, and we know that each topic reifies a single subject,

but unless we can figure out what that subject is the relationship behind the as-

 88

sociation will remain a mystery. The Topic Maps metamodel differentiates be-

tween two kinds of subjects, and offers three ways of pinpointing them.

Subjects are split into addressable and non-addressable ones. The exact defini-

tions are a matter of some controversy, but essentially addressable subjects are

supposed to be things that can be retrieved over the network, whereas non-

addressable subjects cover the rest of the world. Addressable subjects are reified

by specifying a subject address for the topic, usually a URI. 31 Non-addressable

subjects are reified with an additional level of indirection: the subject identifier is

the address of a subject indicator resource that identifies the actual subject. 32 For

example, a subject identifier could be the URI of a web page (the subject indicator)

that describes or illustrates the concept reified by a topic. A subject can have at

most one address, and any number of identifiers.

While intuitively plausible, the dichotomy between addressable and non-

addressable subjects, and the corresponding primitive difference between ad-

dresses and identifiers, is not present in other well-accepted standards. To wit:

• [BM+98a] clearly states that URIs can identify anything, including things

that could not in any way be considered to live “in the network”.

• There is nothing in [BM+98a] prohibiting multiple URIs from identifying

the same resource.

• [Fie99] insists that it’s never the resource itself that is retrieved over the

network, but just a representation of it.

• [Mas02] proposes a “tdb:” (Thing Described By) URI scheme that can

transform any subject identifier into a subject address, thus negating any

difference between them.

31 The original topic map specification supported HyTime references, but most practical work
today is done using URIs.
32 Note that subject identifiers and indicators do not directly correspond to the naïve upper ontol-
ogy Identify and Indicate relations. The relationship is more complex, and explored later in this
section.

 89

The distinction between addressable and non-addressable subjects made by the

Topic Maps metamodel is thus artificial and meaningless. A better way to divide

the two concepts would be to say that addressable subjects have well-known ad-

dresses (URIs), while non-addressable subjects are best identified by description,

though such a split is obviously rather subjective.

Be that as it may, subject addresses and identifiers are a part of the Topic Maps

specification, and LTN allows both to be specified for a topic. As shown in

Figure 4-21 below, a subject address is preceded with a “%” sign, and a subject

identifier with an “@” sign. This example also demonstrates that the same re-

source (http://www.ideanest.com/contact.html) can be used as a subject and a subject

indicator for two different topics (ContactPage and Piotr, respectively).

[Piotr @"http://www.ideanest.com/contact.h
 @"mailto:piotr@ideanest.com"]
[ContactPage %"http://www.ideanest.com/contact.html"]

authorship (Piotr : creator, ContactPage : work)

tml"

Figure 4-21. Example of subject identifiers and indicators

Mapping subject addresses to Braque is simple: this is the same Denote / Identify

relationship between a URI and an idea as in RDF. Subject identifiers, on the

other hand, identify a subject indicator that in turn identifies the subject. Rather

than introduce a new relation, we encode the extra level of indirection explicitly

by modeling the intermediate resource. This resource may be anonymous, as for

the email address in the example, or it may be the subject of another topic in the

map, as for the contact page. Figure 4-22 shows the mapping of the example

above into Braque according to these rules.

 90

Piotr ContactPage

authorship

creator

work

creator role work role

work role

creator role

Enact default

Enact default

<http://www.ideanest.com/contact.html>

Naive::Denote
Naive::Identify

<mailto:piotr@ideanest.com>Naive::Denote
Naive::Identify

Naive::Indicate
Naive::Identify

Naive::Indicate
Naive::Identify

Figure 4-22. Mapping of identifiers and indicators into Braque

The third way to set a topic’s subject is to embed it explicitly as a literal string.

This technique is only allowed in certain situations, and hence will be explored

later, in sections 4.3.5 and 4.3.6.

4.3.3. Class Ontology
The Topic Maps specification provides a small standard ontology for specifying

subject classification and type generalization relationships, since neither is con-

sidered to be a metamodel primitive. Classification employs the type-instance33

association type with the obvious role types, as used in Figure 4-23 to show that

Piotr is an instance of Person.

[type-instance @"http://www.topicmaps.org/xtm/1.0/core.xtm#class-instance"]
[type @"http://www.topicmaps.org/xtm/1.0/core.xtm#class"]
[instance @"http://www.topicmaps.org/xtm/1.0/core.xtm#instance"]

[Person %"http://xmlns.com/foaf/0.1/Person"]
[Piotr]

type-instance (Person : type, Piotr : instance)

Figure 4-23. Specifying the type of a subject using an explicit association

33 You may notice throughout this section that the identifiers use the word class instead of type.
These identifiers were published in an older version of the specification, and carried forward un-
changed to the current version to ease the transition.

 91

This is rather long-winded, so LTM allows a shortcut notation to be used instead.

Figure 4-24 is equivalent to Figure 4-23; the type-instance association is created

implicitly by the LTM processor.

[Person %"http://xmlns.com/foaf/0.1/Person"]
[Piotr : Person]

Figure 4-24. Shortcut for specifying the type of a subject

A subject may be an instance of any number of types. There is no default “root

type” (like RDFS’s Resource), so any subject with no explicitly assigned type sim-

ply does not have one. Furthermore, when using an explicit type-instance associa-

tion to specify the type of an instance, if the roles used are other than precisely

one each of type and instance, the standard interpretation is voided. At this time,

Topic Maps lack a constraint language that could enforce this validity constraint.

While associations are technically “instances” of an association type, this classifi-

cation relation is different from the one exposed above and cannot be expressed

using an association. Were we to try, we would be led to an infinite regress of

type-specification-associations, since for each type-instance association introduced

we’d need to introduce another one to specify its type, and so on. To avoid this

infinite regress (perhaps in an effort to keep the models finite?), Topic Maps uses

a primitive single classification mechanism for associations that was already

mapped into Braque in Section 4.3.1.

Specifying generalization relationships is done just like for classification, except

that LTM does not provide a shortcut in this case. Figure 4-25 shows an example.

[supertype-subtype @"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass-subclass"]
[supertype @"http://www.topicmaps.org/xtm/1.0/core.xtm#superclass"]
[subtype @"http://www.topicmaps.org/xtm/1.0/core.xtm#subclass"]

[Person %"http://xmlns.com/foaf/0.1/Person"]
[Student]

supertype-subtype (Person : supertype, Student : subtype)

Figure 4-25. Specifying a generalization association

 92

Mapping these association types into Braque is a simple matter of aligning the

types and roles with those defined in the NUO. The type-instance association

type is a subclass of the Member relation, while supertype-subtype is a subclass of

Extend. These correspondences, and the mappings of the roles, are shown in

Figure 4-26. We ignore the possibility of malformed associations, since their in-

terpretation is unspecified anyway.

: Naive::Roles

type

: Naive::Roles

instance

: Naive::Roles

subclass

: Naive::Roles

superclass

: Naive::Transitive Relations

superclass-subclass

: Naive::Binary Relations

type-instance

Naive::Extend

Naive::
Superclass

Naive::
Subclass

Domains::Member

Naive::
Container

Naive::
Contained

Figure 4-26. Topic Map classification and generalization embedding

4.3.4. Scopes
Topic maps can indicate the context in which a topic characteristic (an associa-

tion for now, names and occurrences are added in the following sections) is valid

by specifying a scope. But caveat lector: the specification of scopes is at an embry-

onic stage,34 even considering the generally unfinished nature of Topic Maps.

Thus, of necessity, the mapping proposed in this section is very tentative and ex-

plores a few possible interpretations.

Each association may have a scope that determines when the reified relationship

holds true. A scope is defined by a set of subject themes that somehow circum-

scribe the applicability of the scoped relationship. Any subject can be used as a

theme, but some common ones include: people, to scope assertions by opinion

34 Scopes were excised from the RM [NB02], and in the SAM [GM02] an editor’s note in the sec-
tion on scopes states “This section needs to be reconsidered, then rewritten.” See [Gra02] for a
summary of the outstanding issues.

 93

or point of view; languages, to scope names or other words by their natural lan-

guage; and time and/or place, to scope by space-time location of the event. A

simple agent can then set its “context” (a set of themes) so that it only sees the

relevant associations. A more complex agent could compare or combine the in-

formation given in different scopes, depending on its needs.

In LTM, an association’s scope is set by listing its subject themes, separated from

the association with a “/”. Figure 4-31 provides examples of scoping applied to

the evaluation of various objects. In the first association, Piotr expresses the opin-

ion that the Thesis is of Excellent quality. Nigel thought that the Thesis was only

Acceptable before the defense (BeforeDefense), but changed his evaluation to Excel-

lent after the defense (AfterDefense). He has also evaluated Piotr as an overall

Good student. The last association asserts that Piotr is the creator of the Thesis, an

unscoped (and hopefully uncontroversial) statement.

evaluation (Thesis : object, Excellent : quality) / Piotr
evaluation (Thesis : object, Acceptable : quality) / Nigel BeforeDefense
evaluation (Thesis : object, Excellent : quality) / Nigel AfterDefense
evaluation (Piotr : object, Good : quality) / Nigel
authorship (Piotr : creator, Thesis : work)

Figure 4-27. Example of association scoping

When building the mapping into Braque, we must consider the fact that each

scope is related to two different sets: the set of its themes, and the set of all topic

characteristics (associations, for now) that are valid within it. We must decide

which (if any) of these sets should become the scope’s extension, relegating the

other to be implied by relationships attaching its elements to the scope. The

Topic Maps documentation always talks about scopes as sets of themes, but since

the question asked most often is probably “Is this characteristic in scope?” it

seems more useful to consider a scope as a set of valid relationships. Each scope

can then be interpreted as a kind of Classifier (actually, a free Relation) that im-

parts to its members the common property of validity in some given set of cir-

 94

cumstances. Those circumstances are described by attaching themes to a scope

using Constrain relationships.

Before we can map the topic map above into Braque we must also ponder what,

if anything, to do with the last statement, which has no explicit scope. Topic

Maps says that all such statements belong to an “unconstrained scope” that gath-

ers all associations who validity is unconstrained. We therefore introduce a dis-

tinguished Unconstrained Scope into the Topic Maps embedding, shown in Figure

4-28.

: Naive::Classifiers

Scopes

Naive::Ideas Constrain

: Naive::Binary Relations

Constrain

Naive::Relations

Unconstrained
Scope

Theme

: Naive::Roles

Theme

Scope

: Naive::Roles

Scope
Enact default

Figure 4-28. Embedding of Topic Maps scopes

Furthermore, since scopes that share the same set of themes are equivalent, we

must introduce the identity constraint of Equation 4-10.

()
()21

21

21
21),Constrain(),Constrain(:

ScopesScopes:,

ss
ststt

ssss

=⇒









⇔∀
∧∈∧∈

∀

Equation 4-10. Scope identity constraint

With this machinery at our disposal, we can now map the topic map of Figure

4-27 into Braque, as shown in Figure 4-29.

 95

Piotr

Thesis

Nigel

BeforeDefense

AfterDefense

Acceptable

Good

Excellent: evaluation

object

quality

: ScopesConstrain

: evaluation

object

quality

: Scopes

Constrain

: evaluation: Scopes

Constrain

Constrain

Constrain

object
quality

: evaluation

object

quality

: ScopesConstrain

: authorship work

creator

Unconstrained
Scope

Figure 4-29. Example mapping of scopes into Braque

The interesting question now—and the one giving the writers of the Topic Maps

standard the most trouble—is: what are the subsumption relationships between

the scopes, based on their themes? If a topic characteristic is valid in some scope,

does this imply that it is valid in other scopes as well?

Since validity is modeled by membership in a scope classifier, we can model en-

tailment using Extend relationships. If every assertion in scope A must also be

valid in scope B, then we can say that A extends B. Since every assertion in the

unconstrained scope is always valid (that is, valid in any scope) by definition, we

can say that the unconstrained scope extends every other scope (Equation 4-11).

This makes Unconstrained Scope the bottom of the scope extension lattice.

()
())Scope nedUnconstraiExtend(

Scopes:
,s

ss
⇒

∈∀

Equation 4-11. The unconstrained scope is the bottom of the scope lattice

Whether any other extension relationships are implied depends on the interpre-

tation of scopes’ theme sets—and there are three competing ones. To demon-

 96

strate how they work, imagine an agent that has a selected set of themes and

wants to know which assertions are valid. For example, in the sample topic map

above, if we have selected Nigel as our point of view, which assertions are valid?

Clearly, Nigel’s statement about Piotr applies, but what about his statements

about the Thesis?

• The “all themes” interpretation says that only scopes that have all of their

constraining themes in the selected set are applicable. This would put the

Nigel BeforeThesis and Nigel AfterThesis scopes out of bounds, invalidating

their assertions based on the selected point of view.

• The “any theme” interpretation says that every scope that has at least one

constraining theme in the selected set is applicable, and its assertions

valid. Under this interpretation—which makes more sense in this case—

all three of Nigel’s statements are considered valid.

• The “no relation” interpretation holds that there are no default relation-

ships between scopes, and an agent can impose any interpretation it

wants. This puts more power in the hands of agents, but leaves topic map

authors with no clear scope semantics, undermining consistent use of the

mechanism.

All interpretations have their proponents and produce sensible results in differ-

ent situations. Each of them also imposes a different extension lattice structure

on the scopes model. Equation 4-12 gives formal models for the first two inter-

pretations, while Figure 4-30 shows the results of applying them to some simple

scopes, labelled with their constraining themes. (Extension is transitive, so re-

dundant relationships were eliminated to clarify the diagrams.)

 97
()

() 













⇔








⇒∀⇒

∈∧∈∀

),Extend(
),Constrain(

),Constrain(:

ScopesScopes:,

21

2

1

2121

ss
st

stt

ssss

(a) “All themes” interpretation

 ()

() 













⇔








⇒∀⇒

∈∧∈∀

),Extend(
),Constrain(

),Constrain(:

ScopesScopes:,

12

2

1

2121

ss
st

stt

ssss

(b) “Any themes” interpretation

Equation 4-12. Two formal interpretations of theme-based scope extension

::Scopes

(a) "All themes" necessary (b) "Any theme" sufficient

a b c

::Unconstrained
Scope

a b b c

a b c

a b c

::Unconstrained
Scope

a b b c

a b c

::Scopes

Figure 4-30. Sample results of two interpretations of scope extension

With these lattices, it is much simpler for an agent to gather valid assertions

based on a set of selected themes. In the “all themes” interpretation, an agent

merely has to look in the scope constrained by all selected themes: assertions

from subsumed scopes are already merged in. In the “any themes” interpreta-

tion, an agent has to create a new scope with no themes that is extended by all

the others single-themed scopes matching the selected themes. This more com-

plex procedure is necessary because, under this interpretation, applying a con-

strained scope means that one or more of its themes are selected, whereas an agent

wants all selected themes to be in force. Another interesting consequence of the

“any themes” interpretation is that the Unconstrained Scope inherits the themes of

all the other scopes.

 98

Since neither interpretation is appropriate in all situations, it seems likely that

Topic Maps will eventually gain a more powerful scoping facility [PG01] that

gives authors more control over the scope extension lattice.

4.3.5. Names in Topic Maps
Topic Maps deploy a flexible system for assigning names to subjects. Each sub-

ject can have any number of base names, which must be strings. Each base name

may further have any number of variants of any nature. The variants could be

translations to different languages, alternative strings to be used when sorting,

visual or auditory renditions of the name, or any other resource that somehow

represents the name. Both base names and their variants can be independently

scoped.

LTM allows one to easily specify base names, but provides limited support for

specifying variants. Only the two basic variants defined in the standard ontol-

ogy are supported, and both must be strings: “sort names” (to be used when

sorting the subjects) and “display names”.35 Figure 4-31 gives Piotr the base

name “Piotr Kaminski”, and TheMatrix the base name “The Matrix” with the sort

name variant “Matrix, The”. Notice that this is one of the places where the sub-

ject (in this case, the name) is specified verbatim rather than by reference.

[Piotr = "Piotr Kaminski"]
[TheMatrix = "The Matrix" ; "Matrix, The"]

Figure 4-31. Assigning base and variant names to subjects

Since names are a Topic Maps primitive, there are no standard association types

in the ontology, so we will reuse the NUO’s indication hierarchy in the mapping.

Each base name introduces a new (abstract) name for the subject and a corre-

sponding string representation. Each variant provides an alternative representa-

35 In old versions of the Topic Maps standard, the base name was considered a unique trait of the
subject, and two topics with the same base name for their subjects would be merged. Thus, a
separate display name was required if the author wanted two topics to show the same name but
not get merged. This “topic naming constraint” may not be retained in future revisions, in which
case the “display name” variant would likely be dropped.

 99

tion for the abstract name, scoped by the appropriate variant themes. (Non-

string variants, though unsupported in LTM, are handled the same way.) Figure

4-32 shows the mapping of the topic map above to Braque.

Piotr "Piotr Kaminski"

TheMatrix
"The Matrix"

"Matrix, The"

: Naive::Represent: Scopes
::sort name

theme Constrain

: Naive::Represent

::Unconstrained Scope

: Naive::Represent

: Naive::Denote

: Naive::Denote

Figure 4-32. Mapping Topic Maps names to Braque

Arbitrary scopes specified by the author are modeled in the same way as for as-

sociations. A scope on a base name applies to both the Denote and the Represent

relationships. A scope on a variant applies only to the new Represent relationship

it introduces. The only additional Topic Maps restriction is that the themes of

any variant scopes must be a superset of the base name scope’s themes. Pre-

sumably, the intent is that whenever the base name is applicable, all the variant

names should be applicable as well—that is, variant scopes should extend the

base name scope. However, this effect is only achieved under the “any theme”

interpretation; under the “all themes” interpretation, this restriction would result

in variant scopes being more general than the base name scope.

4.3.6. Occurrences
Occurrences are the last notable feature of Topic Maps, and the one that ties them

most strongly to their indexing roots. In a book’s index, each entry lists the page

 100

numbers where the topic is discussed: these are pointers to occurrences of the

topic. While these occurrences could easily be described using associations, the

designers of Topic Maps apparently felt that this feature was sufficiently impor-

tant to rate its own primitive mechanism.

An occurrence is a binary relationship between a subject and a resource. The re-

source may be identified with an address, or entered in-line as a string. The oc-

currence may also have a type that more closely specifies how the resource is re-

lated to the subject, and a scope to constrain its validity. Figure 4-33 shows two

sample occurrences written in LTM. The first gives the address of a resource re-

lated to the subject, and the second provides an in-line description of its subject,

scoped by the English language. (Note that for some reason LTM requires all oc-

currences to have an explicit type.)

{ Braque, specification, “http://www.ideanest.com/research/documents/Thesis.doc” }
{ Braque, description, [[Peter’s pomset-based metamodel]] } / English

Figure 4-33. Sample occurrences

Occurrences are very close in both structure and meaning to RDF triples, so we

will model them the same way. Occurrence types are mapped to binary relations,

and individual occurrences to member relationship ordered pairs. The Occur-

rences relation contains all occurrences of unspecified type, and is the superclass

of all occurrence relations. Figure 4-34 shows the relation and assorted roles.

: Naive::Binary Relations

Occurrences

: Naive::Roles

Subject

: Naive::Roles

Occurrence

Naive::Ideas

Occurrences
SubjectOccurrence

Figure 4-34. Occurrences relation and roles

Figure 4-35 shows the mapping of the sample occurrences above into Braque.

 101

<http://www.ideanest.com/research/documents/Thesis.doc>

Naive::Denote
Naive::Identify

Braque

"Peter's pomset-based metamodel"

::Occurrences

specification

description

::Unconstrained Scope

: Scopes English

Constrain

Figure 4-35. Sample mapping of occurrences into Braque

4.4. Integration Example
The previous sections discussed the metamodel mappings in detail; the time has

come to put all this material together. This section presents a small example of

integration, amalgamating three models, one of each kind (XML, RDF and Topic

Maps). The goal is to show that models of different kinds can be integrated into

one structure at the same semantic level using a generic mapping.

The plot behind the example is as follows. The University of Victoria is creating

a new Bachelor of Software Engineering degree program (see

http://www.cs.uvic.ca/~hausi/sedp/). The list of courses offered as part of the program

has been encoded in RDF (Section 4.4.1), so that it can easily be merged into the

university’s course calendar. To attract students to the new program, the direc-

tor has decided to show how the courses are relevant to the technical job market.

She has located a number of job ads on the web, encoded in XHTML 2.0 [MA+02],

an XML vocabulary (Section 4.4.2). She then asked the faculty and the employers

for help in rating the relevance of material taught in the various courses to the

job positions. Since many of the courses have not yet been taught even once, and

 102

not everybody agrees on the exact content of each course, the ratings are some-

what subjective. In order to properly attribute the opinions, she has modelled

the results as a topic map, with extensive use of scoping by authorship (Section

4.4.3). Finally, all three models are merged in Braque to provide students with a

unified view of the information (Section 4.4.4).

Although the example is realistically motivated, some of the details are of neces-

sity a little contrived to keep the demonstration focused. Only representative

fragments of the models are presented, to keep the size manageable. The models

are carefully set up to work together, since large-scale ontology alignment is out-

side the scope of this thesis. Finally, while the models try to showcase the

unique qualities of each metamodel, they do not exercise every possible fea-

ture—for instance, it is difficult to find a practical use for RDF reification.

4.4.1. Course List in RDF
With the University of Victoria being at the forefront of semantic web develop-

ment, the program committee has encoded the list of new courses in RDF. Al-

though the abbreviated serialization syntaxes have a higher information density,

and hence would be more appropriate for large data sets, fragments of the model

are reproduced here in NTriples for simplicity. To keep the documents readable,

the serialization substitutes short prefixes for the invariant part of each URI

(Table 4-1). Prefixes are not part of the standard, but to obtain a valid NTriples

document simply replace each prefix (including the colon) with its matching URI,

concatenating it with the given suffix, and surround the whole construct with

angled brackets.

Prefix URI
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
bseng: http://www.engr.uvic.ca/bseng/courses#

Table 4-1. Prefix substitutions for RDF course list

 103

With these prefixes in place, Figure 4-36 presents some fragments of the RDF

course list. The first block introduces the model’s schema, relating it to standard

RDF classes and properties. The next two blocks give some information about

two of the courses offered in the program. The prerequisite courses referenced

are assumed to be defined elsewhere in the model, but are not shown in this

fragment. Parts of the syllabi are also elided to conserve space. More properties

and more courses could easily be added, but would not contribute to this exam-

ple.

bseng:Course rdf:type rdfs:Class .
bseng:code rdf:type rdf:Property .
bseng:code rdfs:subPropertyOf rdfs:label .
bseng:prereq rdf:type rdf:Property .
bseng:syllabus rdf:type rdf:Property .

bseng:IKM rdf:type bseng:Course .
bseng:IKM bseng:code "IKM" .
bseng:IKM rdfs:label "Information and Knowledge Management" .
bseng:IKM bseng:prereq bseng:DB .
bseng:IKM bseng:syllabus _:IKMsyl .
_:IKMsyl rdf:type rdf:Seq .
_:IKMsyl rdf:_1 "Information models and systems: History and..." .
_:IKMsyl rdf:_2 "Database systems: History and motivation for..." .
 …syllabus continues…
_:IKMsyl rdf:_12 "Privacy and civil liberties: Ethical and..." .

bseng:HCI rdf:type bseng:Course .
bseng:HCI bseng:code "HCI" .
bseng:HCI rdfs:label "Human-Computer Interaction" .
bseng:HCI bseng:prereq bseng:SE3 .
bseng:HCI bseng:prereq bseng:WE .
bseng:HCI bseng:syllabus _:HCIsyl .
_:HCIsyl rdf:type rdf:Seq .
_:HCIsyl rdf:_1 "Foundations of human-computer interaction..." .
 …syllabus continues…
_:HCIsyl rdf:_7 "HCI aspects of collaboration and..." .

Figure 4-36. RDF course list fragment

Figure 4-37, Figure 4-38 and Figure 4-39 show the mapping of this RDF fragment

to Braque.

 104

Course

RDFS::Class

RDF::type

RDF::Property

code prereq syllabus

RDF::type RDF::type RDF::type

RDFS::label

RDFS::subPropertyOf

<http://www.engr.uvic.ca/bseng/courses#Course>

<http://www.engr.uvic.ca/bseng/courses#code>

<http://www.engr.uvic.ca/bseng/courses#prereq>

<http://www.engr.uvic.ca/bseng/courses#syllabus>

Naive::Denote
Naive::Identify

Naive::Denote
Naive::Identify

Naive::Denote
Naive::Identify

Naive::Denote
Naive::Identify

Figure 4-37. Course list schema in Braque

: Course

IKM

"IKM"

Naive::Denote

Naive::Represent

"Information and
Knowledge Management"

Naive::Denote

Naive::Represent

code
RDFS::label

DB

prereq

: RDF::Seq

IKMsylsyllabus

"Information models and systems: History and…"

"Database systems: History and motivation for…"

"Privacy and civil liberties: Ethical and…"

<http://www.engr.uvic.ca/bseng/courses#IKM>

Naive::Denote
Naive::Identify

RDF::_1
RDF::_2

RDF::_12

total order from
bottom to top, some
elements elided

..
.

...

Figure 4-38. IKM course in Braque

 105

: Course

HCI

"HCI"

Naive::Denote

Naive::Represent

"Human-Computer
Interaction"

Naive::Denote

Naive::Represent

code
RDFS::label

SE3

prereq

: RDF::Seq

HCIsylsyllabus

"Foundations of human-computer interaction…"

"HCI aspects of collaboration and…"

<http://www.engr.uvic.ca/bseng/courses#HCI>

Naive::Denote
Naive::Identify

RDF::_1
RDF::_7

total order from
bottom to top, some
elements elided

..
.

WE

...

prereq

Figure 4-39. HCI course in Braque

4.4.2. Job Offerings in XML
High-tech companies, being at the forefront of technology, post open positions

on their web sites, encoded in XHTML 2.0 [MA+02]. Since XHTML is an XML

vocabulary, the documents can be imported directly into Braque. Figure 4-40

shows sample postings for two positions at the fictitious IdeaNest Inc. Note that

the positions are embedded within anchor (“<a>”) elements with IDs, to make

referencing them simpler. Had they been missing, we would have had to resort

to structural XPath [CD99] expressions to identify relevant document fragments.

The document is located at http://www.ideanest.com/jobs.html; this will help us derive

the full URIs that correspond to the IDs.

 106
<?xml version="1.0"?>
<!DOCTYPE html>
<html
 xmlns="http://www.w3.org/2002/06/xhtml2"
 xmlns:html="http://www.w3.org/2002/06/xhtml2"
>
 <head>
 <title>IdeaNest Entry-Level Positions</title>
 </head>
 <body>
 <a html:id="job425">
 <h>Software Engineer</h>
 <p>
 You will be programming in Java, implementing high-level designs. You will
 apply design patterns in the small to produce elegant, maintainable, well-tested
 code. Interest in knowledge management a big plus.
 </p>

 <a html:id="job478">
 <h>Visualization Developer</h>
 <p>
 You will come up with novel ways of visualizing complex information. You will
 prototype your designs and conduct user studies to analyze and iteratively
 improve your prototypes.
 </p>

 </body>
</html>

Figure 4-40. XHTML job offerings example

Figure 4-41 shows the Braque mapping of the XHTML fragment’s namespace,

element types and attribute types. Figure 4-42 show the mapping of the model’s

structure, augmented with the vocabulary-specific inference of Equation 4-13.

The equation looks complex, but simply says that every HTML element with an

“<id>” attribute has a URI that is the concatenation of the base document’s URI

and the attribute’s value. When an XML document is read in, all its elements

and attribute relationships are put into an XML::Documents nest, which then

represents the resource identified by the document’s URI.

 107

()])1[],2[(Identify::Naive])1[],2[(Denote::Naive
),(Identify::Naive),(Denote::Naive

URIs::Domains),(Represent::Naive
Documents::XML

Names Attribute::XMLNames Qualified::XML
)id"",(part Local::XML

),/xhtml2rg/2002/06//www.w3.o:http(Identify::Naive
),/xhtml2rg/2002/06//www.w3.o:http(Denote::Naive

Namespaces Top::XML

:,,,,,

aabaab
rbrb

brd
ddaia

ii
ini

n
n

n

brdina

+∧+⇒



























∧
∧∈∧

∧∈∧∈∧∈
∧∈∧∈

∧∧∈
∧><

∧><
∧∈

∀

Equation 4-13. XHTML identification inference

: XML::Top Namespace

xhtml2-ns

: XML::Qualified Names
: XML::Element Type Names
: xhtml2-ns

<http://www.w3.org/2002/06/xhtml2> Naive::Denote
Naive::Identify

"html"XML::Local part

: XML::Element Types

html
Naive::Denote
Naive::Identify

: XML::Qualified Names
: XML::Element Type Names
: xhtml2-ns

"title"XML::Local part

: XML::Element Types

title
Naive::Denote
Naive::Identify

: XML::Qualified Names
: XML::Element Type Names
: xhtml2-ns

"body"XML::Local part

: XML::Element Types

body
Naive::Denote
Naive::Identify

: XML::Qualified Names
: XML::Element Type Names
: xhtml2-ns

"a"XML::Local part

: XML::Element Types

a
Naive::Denote
Naive::Identify

: XML::Qualified Names
: XML::Element Type Names
: xhtml2-ns

"h"XML::Local part

: XML::Element Types

h
Naive::Denote
Naive::Identify

: XML::Qualified Names
: XML::Element Type Names
: xhtml2-ns

"p"XML::Local part

: XML::Element Types

p
Naive::Denote
Naive::Identify

: XML::Qualified Names
: XML::Attribute Type Names
: xhtml2-ns

"id"XML::Local part

: XML::Attribute Types

id
Naive::Denote
Naive::Identify

Figure 4-41. XHTML schema fragment in Braque

 108

: html

: head

: title "IdeaNest Entry-Level Positions"

: body

: a "job425"id

: h "Software Engineer"

: p "You will be programming […] a big plus."

: a "job478"id

: h "Visualization Developer"

: p "You will come up […] your prototypes."

<http://www.ideanest.com/
jobs.html#job425>

Naive::Denote
Naive::Identify

<http://www.ideanest.com/
jobs.html#job478>

Naive::Denote
Naive::Identify

Naive::Represent

<http://www.ideanest.com/jobs.html>

Naive::Denote
Naive::Identify

XML::Documents

Figure 4-42. XHTML model fragment in Braque

4.4.3. Coverage Opinions as Topic Maps
A few days after the director puts out the call for help with relevance ratings,

opinions start coming in. Since the director did not have time to build an interac-

tive web page to collect the data, most of the answers come in email messages

and she decides to create a topic map to integrate them. 3-ary associations can

accurately record opinions,36 scoping makes it easy to track their authors, and the

36 Another option would have been to record binary job-course associations, then reify them to
assign a relevance rating with another binary association. The decision whether to use n-ary as-
sociations or to reify and use binary ones is often arbitrary.

 109

LTM syntax is better suited to manual input than NTriples or any XML vocabu-

lary.

Before the director can begin entering the opinions arriving in her mailbox, she

must articulate her resource identification strategy. She decides to use email ad-

dresses as subject identifiers for people, since they are reasonably unique and

stable, and easy to pick out from the incoming messages. She also decides to use

the job offerings’ anchor IDs as subject identifiers; it would be wrong to use them

as subject addresses for the jobs, since the URIs identify HTML fragments, not

abstract job positions. On the other hand, the RDF course list is using the course

URIs to directly identify the courses, so they must become subject addresses in

the topic map for the integration to work properly.

The last problem facing the director is that she asked respondents to assign rele-

vance ratings on a scale of 1 to 5 (1 being least relevant), but Topic Maps does not

allow literals to participate in associations. Luckily, she remembers a proposal

for assigning standard URIs to common data values [Sti01], so she creates five

topics with subjects addressed by the URIs for integer values 1 through 5.

Figure 4-43 presents a fragment of the topic map containing a handful of topic

declarations and opinion entries.

[se_job @"http://www.ideanest.com/jobs.html#job425"]
[vis_job @"http://www.ideanest.com/jobs.html#job478"]

[IKM %"http://www.engr.uvic.ca/bseng/courses#IKM"]
[HCI %"http://www.engr.uvic.ca/bseng/courses#HCI"]

[piotr = "Piotr Kaminski" @"mailto:piotr@ideanest.com"]
[jdoe = "John Doe" @"mailto:jdoe@uvic.ca"
 @"mailto:john@cs.uvic.ca"]

[1 %"x:int:1"] [2 %"x:int:2"] [3 %"x:int:3"] [4 %"x:int:4"] [5 %"x:int:5"]

coverage (se_job : job, IKM : course, 4 : relevance) / piotr
coverage (vis_job : job, IKM : course, 4 : relevance) / piotr
coverage (se_job : job, IKM : course, 2 : relevance) / jdoe
coverage (vis_job : job, HCI : course, 5 : relevance) / jdoe

Figure 4-43. Coverage opinions topic map

 110

Figure 4-44 shows the mapping of the topic definitions into Braque, while Figure

4-45 show the associations, roles and scopes. Note that mapping the “x:int” URIs

to the numbers they denote requires a synthetic relation of infinite cardinality, of

which only the relevant members are shown here.

se_job Naive::Identify

<http://www.ideanest.com/
jobs.html#job425>

Naive::Denote
Naive::Identify

vis_job Naive::Identify

<http://www.ideanest.com/
jobs.html#job478>

Naive::Denote
Naive::Identify

IKM

<http://www.engr.uvic.ca/
bseng/courses#IKM>

Naive::Denote
Naive::Identify

HCI

<http://www.engr.uvic.ca/
bseng/courses#HCI>

Naive::Denote
Naive::Identify

piotr : Naive::Denote
: Topic Maps::Unconstrained Scope

: Naive::Represent
: Topic Maps::Unconstrained Scope"Piotr Kaminski"

jdoe : Naive::Denote
: Topic Maps::Unconstrained Scope

: Naive::Represent
: Topic Maps::Unconstrained Scope"John Doe"

<mailto:piotr@ideanest.com>

Naive::Identify

Naive::Denote
Naive::Identify

<mailto:jdoe@uvic.ca>

Naive::Identify

Naive::Denote
Naive::Identify

<mailto:john@cs.uvic.ca>

Naive::Identify

Naive::Denote
Naive::Identify

1

<x:int:1>

Naive::Denote
Naive::Identify

2

<x:int:2>

Naive::Denote
Naive::Identify

3

<x:int:3>

Naive::Denote
Naive::Identify

4

<x:int:4>

Naive::Denote
Naive::Identify

5

<x:int:5>

Naive::Denote
Naive::Identify

Figure 4-44. Topic map definitions in Braque

 111

job job roleNaive::Enact default

course course roleNaive::Enact default

relevance relevance roleNaive::Enact default

: Topic Maps::Scopes

piotr scope

::piotr

Topic Maps::Constrain

: Topic Maps::Scopes

jdoe scope

::jdoe

Topic Maps::Constrain

: coverage
: piotr scope

::se_job

::vis_job
::IKM

::HCI

2

4
5

job role

course role

relevance role

: coverage
: piotr scope

job role

course role

relevance role

: coverage
: jdoe scope

: coverage
: jdoe scope

job role
course role

relevance role

job role

course role

relevance role

Figure 4-45. Topic map associations in Braque

4.4.4. Integrated Model in Braque
With all three models mapped into Braque, integrating them is just a question of

merging the ideas they have in common. This process could be done by hand,

but in this example the URIs were carefully chosen to automatically “line up” the

models so it is sufficient to globally apply the “Identify is a function” rule

(Equation 3-5). The appropriate job and course ideas are merged, connecting the

models. Figure 4-46 shows only the essentials of the integrated model to cut

down on the clutter, but all the ideas and relationships presented in previous

diagrams are still there.

 112

: coverage

se_job

vis_job

2

4
5

job role

course role

relevance role

: coverage

job role

course role

relevance role

: coverage : coverage

job role

course role

relevance role

job role

course role

relevance role

Piotr Kaminski John Doe

: a : h "Software Engineer"

: p "You will be programming […] a big plus."

: a : h "Visualization Developer"

: p "You will come up […] your prototypes."

Naive::Identify

Naive::Identify

: Topic Maps::Scopes

piotr scope

: Topic Maps::Scopes

jdoe scope

Topic Maps::ConstrainTopic Maps::Constrain

: Course

IKM

DB prereq
: RDF::Seq

IKMsyl

syllabus

"Information models and systems: History and…"

"Database systems: History and motivation for…"

"Privacy and civil liberties: Ethical and…"

...

: Course

HCI

SE3
prereq

: RDF::Seq

HCIsyl

syllabus

"Foundations of human-computer interaction…"

"HCI aspects of collaboration and…"

WE
...

prereq

Topic Maps::Theme

Topic Maps::Scope

Topic Maps::Theme

Topic Maps::Scope

RDF::subject

RDF::object

RDF::subject

RDF::object

RDF::subject

RDF::object

RDF::subjectRDF::subject

RDF::object

RDF::object

Naive::Indicated
Naive::Indicator

Naive::Indicator
Naive::Indicated

Figure 4-46. Essentials of the integrated model in Braque

 113

With the models integrated, a student could now browse the employment offers,

navigate seamlessly to the relevant course descriptions, and examine the courses’

prereqs to help build his study schedule, or perhaps navigate back to all the ads

relevant to a course to see what other career paths it enables. The director has a

full record of the data collected, not just averages; if she wanted to, she could

even attach the coverage associations to the email messages they were derived

from. All information is preserved, and the three models could be extracted

from the union and exported back in their original formats.

Moreover, not only are the models integrated structurally, but the RDF and

Topic Maps models are also integrated semantically. Figure 4-46 displays all the

inferred roles on the binary relationships (Section 3.3.4 and Equation 3-8), so both

RDF and Topic Maps relationships’ members can be uniformly accessed by role.

An agent navigating or querying the integrated model does not need to know the

original metamodel of each fragment. (Uniform access by index is possible too, if

appropriate Play Role by Index declarations are set up for the Topic Maps associa-

tion types.)

Even better integration is possible, of course, but requires manual intervention at

the level of specific ontologies (semantic level). For example, the RDF model’s

Course class and the topic map’s course type should probably be merged into one

classifier, and some better semantics imposed on the XML model. However,

automated object level integration provides a useful basis for further ontology

mapping, which is outside the scope of this thesis.

 114

5. Related Work
Modelling and integration is a crowded field, with multifarious approaches vy-

ing for dominance. This penultimate chapter take a critical look at the salient

tools and ideas to put Braque into perspective.

5.1. The Integrated Metamodels
This section takes another, more critical look at the metamodels that were inte-

grated in Chapter 4. Since the metamodels’ structures were already explored in

detail, this section merely critiques the metamodels’ features in the context of the

IMI Reference Model’s object layer (Section 2.3.2) and the goals set out in Section

3.1, and demonstrates that none is expressive enough to comfortably integrate

the other two.

5.1.1. Extensible Markup Language
XML [BPS00] by itself is a rudimentary metamodel, limited to a strict tree struc-

ture and unable to further describe the types of its elements. It gets more inter-

esting when augmented with precise intra-document addressing (e.g., XPath

[CD99] and XPointer [DMD01]), cross-branch linking constructs (e.g., XLink

[DMO01]), and type specifications (e.g., XML Schema [TB+01][BM01] or RELAX

NG [CM01]). With these additions, XML becomes a credible metamodel, and a

possible semantic web dark horse.

The XML metamodel, however, is fundamentally different from other semantic

web metamodels: it is not based on the assumption that a model reifies a world

that consists of things and relationships. To put it another way, XML is about

structure rather than meaning—about data, not information. That is not to say

that XML cannot be used to express information, but rather that the specifications

listed above do not take this point of view into consideration, and hence there is

no standard interpretation for the data. It is thus meaningless (or at least prema-

ture) to talk about integrating other metamodels into XML.

 115

Could a generic interpretation of augmented XML be constructed? Would such

an interpretation be perceived as valuable by the XML community? These are

still open research questions; some preliminary answers are explored in Section

5.2. Since XML and most of the extensions listed above have already achieved

considerable traction on the Internet—much more so than all other semantic web

metamodels combined—finding a way to integrate the extant data into the se-

mantic web should be a high priority.

5.1.2. Resource Description Framework
The basic ideas of RDF are simple, though some of the particulars were badly in-

fluenced by the original XML serialization syntax. Why can a literal not be the

subject of an assertion? Why can an assertion’s predicate not be a blank node?

Why are all literals strings? These small issues are annoying but irrelevant in the

long term, since they could all easily be fixed.

More important is RDF’s implementation of the object layer features from the

IMI Reference Model. Right from the start, RDF runs into trouble by partially

conflating object identity with URI equality: each (non-blank) node is labelled

with a single distinct URI. In theory, this is correct, since each URI is supposed

to identify a single resource [BM+98a], but in practice, this assumption is not al-

ways warranted.37 A metamodel that cannot deal gracefully with authors’ con-

flicting assumptions will not succeed in integrating information on the semantic

web. A simple way to fix this problem would be to eliminate URI-labelled nodes

and replace them with blank nodes with an explicit relationship to their URI

identifier literal, to allow RDF agents to control resource identification using ex-

isting metamodel mechanisms. Although this has been informally suggested be-

37 Some claim that this unique identification is an axiom, and hence true by definition, and it is
the meaning given to the resource that changes. There are many ways to dance around the issue,
and much electronic ink has been spilled arguing about it, but in the end squeezing the balloon in
one place just makes it bulge somewhere else.

 116

fore [Haw02], it is very unlikely that such a controversial change could officially

be made to RDF.

RDF works fine for the next two features—binary relationships and basic typ-

ing—but its handling of the last three leaves much to be desired. In RDF, state-

ment reification is crucial for establishing the provenance of assertions, yet the

mechanism is unbearably clumsy. Reifying all the statements in a model quintu-

ples its size without introducing any new information, and there is no way to

connect a reification to the original stating. As for ordering, the use of ordinal

properties to indicate membership results in very weak semantics for containers

(see [Hay02a] Section 3.2.2). OWL [DC+02] will probably introduce a linked-list-

like container construct to remedy some of the semantic issues, but as any first-

year Computer Science student knows, this linear data structure is not appropri-

ate in all circumstances. Finally, perhaps the best evidence that RDF’s imple-

mentation of reification and containers is ineffective is that these mechanisms are

rarely used “in the wild”. [MA+02] found no examples of use at all, while the

raw data (http://www.i-u.de/forum/rdf/text-with-tab-2002.zip) associated with [Ebe02]

shows some use of containers, but less than a dozen valid uses of reification in

over 250000 assertions.

RDF also has no support for representing n-ary relationships (for n>2): they

have to be constructed from n binary relationships. These binary relationships

are attached to a central node that represents the n-ary relationship as shown in

Figure 5-1.

_:x <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> _:Teach
_:x _:Teacher “Piotr Kaminski”.
_:x _:Course “SEng 330”.
_:x _:Section “F01”.

Figure 5-1. A ternary relationship in RDF

This mechanism has many problems, the most flagrant being that n-ary relation-

ships are completely different from binary ones. The type of an n-ary relation-

 117

ship is indicated with a type predicate, like for any normal resource, whereas as

binary relationship’s type is the predicate. The subject and object of a binary re-

lationship are primitive features, indicated by their position in the triple, while

each components of an n-ary relationship must be specified with a separate

statement. These differences force n-ary relations to be treated differently when

defining ontologies or querying RDF databases. N-ary relations are already rare,

and this second-class treatment is likely to further encourage their replacement

with inaccurate workarounds.

Overall, RDF is best suited to publishing simple information in documents where

the meaning of URIs can be centrally controlled. Its inadequate implementation

of object layer features makes it useless for model integration.

5.1.3. Topic Maps
The first criticism that might be levelled at Topic Maps is that the metamodel

contains all kinds of constructs that do not necessarily apply to all models, such

as occurrences, complex naming, and perhaps even scoping. The committee has

recognized this shortcoming, and separated the specification into two layers: the

base Reference Model [NB02] and the Standard Application Model [GM02] built

upon it. Although the relationship between these two models has not yet been

fully explicated, the remainder of this critique concerns itself only with the Ref-

erence Model.

The associations used by Topic Maps elegantly satisfy the binary and n-ary rela-

tionship requirements of the IMI object layer. Basic typing is well done for sub-

jects, though the limitation of associations to a single type seems arbitrary. The

reification facilities are also excellent, since they espouse pre-emptive reification

[New02] and do not require the introduction of any extra assertions à la RDF.

Unfortunately, Topic Maps subject identification suffers from the same problems

as RDF’s: URIs are too closely coupled to topic nodes. Topic Maps also have no

 118

built-in ordering mechanism, though it would be possible to introduce ordinal

properties similar to RDF, with the same concomitant problems.

Overall, stripped of their extra baggage, Topic Maps are a decent generic meta-

model, richer than RDF. The scoping and naming mechanisms could use some

refinement, but are definitely worthy of being emulated in any high-level ontol-

ogy. However, the strict subject identification cannot be scoped, which makes it

difficult to integrate models that may not agree on the meaning of a URI. The

lack of ordering also makes it very difficult to integrate any models where this is

a primitive feature, such as XML.

5.2. Merging RDF and XML
Ever since RDF saw the light of day, some people have been trying to justify the

need for a separate metamodel that used XML for syntax but ignored its struc-

ture [Ber98][ST99]. Others have been trying to merge the models in various ways.

Of course, the problem (as identified earlier in Section 4.1) is that it is impossible

to ascribe semantics to arbitrary XML documents beyond their structure (defined

in the XML Information Set [CT01]).

This section presents an overview and criticism of some draft techniques for uni-

fying XML and RDF. Some of the approaches introduce a new metamodel.

Though these metamodels were only meant to hold XML and RDF information, I

nonetheless evaluate their potential for more wide-scale metamodel integration.

Note that none of the proposals attempt to unify XML qualified names and RDF

URIs; only the last one (Section 5.2.3) even mentions it. Such unification is easier

if names are explicitly represented in the model (as in Braque), but rather tricky

when they are metamodel primitives.

5.2.1. Bridging the Gap
Melnik’s proposal [Mel99] is the simplest: he suggests a technique for expressing

arbitrary XML documents with an unmodified RDF metamodel. By default, both

 119

attribute and element labels are considered to describe roles and are mapped to

RDF properties (edge labels) in the model. Any character content mixed in with

elements is mapped to literals and attached to the parent element with ordinal

properties, treating it as a container. However, if there is only one child, it is at-

tached to the element as an rdf:value property instead.

Since not all element labels name roles, Melnik also defines a mechanism to treat

them as element type names instead. When interpreted as such, the element is

given an rdf:type identified by its label, and is attached to its parent using an or-

dinal or rdf:value link, like the literals above.38 This special treatment is triggered

by attaching an instance attribute to the element. This attribute can be specified

either in the XML document itself, or in the document’s schema (a DTD [BPS00]

in Melnik’s paper, but XML Schema [TB+01] would work as well). A few other

attributes provide finer control over the mapping.

Melnik’s mapping is representative of what can be done to integrate XML data

into RDF models. Some of the fine points could definitely be improved:

• Mapping details might be controlled through a third document instead of

modifying the original or its schema.

• rdf:value ought to be abandoned to make the mapping more consistent.

• The mapping should differentiate between properties induced by ele-

ments and properties induced by attributes, perhaps by introducing new

subclasses of rdf:Property.

Overall, though, one cannot do much better within the boundaries of the RDF

metamodel. The ordering of children elements with role-like labels cannot be

preserved, since the predicate can only express either the role or the ordinal.

38 Apparently, the algorithm for every element is to first attach all children elements with role-
like labels using each role’s matching property, then attach all remaining children literals and
elements with type-like labels using ordinal properties, or rdf:value if only one remains.

 120

There is also no way to get rid of the ugly ordinal properties that RDF uses to

represent order.

5.2.2. OrdLab Graphs
Boley realizes that force fitting an ordered nesting structure onto labelled prop-

erty edges is a non-starter, and proposes a combined metamodel [Bol01] that al-

lows mixing of ordered and labelled edges.

Boley starts with XML document trees, where each element is represented by a

vertex labelled with the element’s name as its type and with the element’s con-

tents as its substance. The element’s substance label consists of its character con-

tent (call this a literal vertex), or remains empty if the element only contains ele-

ment children and no text (call this a structure vertex). Mixed content—an ele-

ment containing both text and children elements—is not allowed in the model.

Structure vertices have directed edges going to their children, and each vertex’s

outgoing edges are totally ordered, reflecting the document order of markup.

Element attributes are not represented in the tree.

On the RDF side, the graph is based on the usual definition [Bec02]. Each re-

source is a vertex labelled with its type and its URI (or with its literal, or left

blank). A special “any” type is used in the graph if the resource lacks an RDF

type, and special (but vaguely defined) intersection types are introduced if the

resource has multiple RDF types. Unordered directed edges, labelled with prop-

erty URIs, link pairs of resources.

The two metamodels have differences in edge ordering, edge labelling and label

syntax. The unified metamodel is, in Boley’s own words, the “least general gen-

eralization” that encompasses the two data models. Each vertex’s collection of

outgoing edges is composed of a list of totally ordered unlabelled edges and a set

of unordered labelled edges. The unlabelled edges come from XML children

elements and RDF Seq containers. The labelled edges come from RDF statements,

 121

as well as from XML documents extended with role-playing indicators.39 Boley

also proposes some special element attributes that would allow vertices originat-

ing from XML and RDF to be merged based on their URI substance label.

Boley’s metamodel is a good effort, but sadly incomplete. It does not completely

model XML documents, missing attributes and mixed content, which are hardly

arcane features. Holding the vertex type as a secondary label instead of making

it a part of the graph structure is also a mistake, as demonstrated by the awk-

ward mapping from RDF’s multiple-classification type system. It should also be

obvious by now that making labels out of resource URIs is not a good idea.

Edge ordering is without doubt the metamodel’s best feature, but even this could

be improved. The dichotomy between labelled and ordered edges is too restric-

tive: sometimes it is useful for an edge to have both features. The total order on

the unlabelled edges should also be relaxed, to allow for mapping of RDF’s Bag

and Alt containers and so as not to force an arbitrary linear order when different

vertices’ edges are merged (e.g., when making inferences or otherwise manipu-

lating the graph).

Since Boley’s metamodel fails to completely subsume XML and RDF (its stated

goal), it does not come as a surprise that it is inadequate for integrating meta-

models in general. Taking Topic Maps as an example, there is no way to model

associations in the graph without resorting to a lift (see Section 2.4.3) to represent

the association itself as a vertex in the graph, breaking semantic continuity with

the RDF and XML of the model.

5.2.3. The Yin/Yang Web
Patel-Schneider and Siméon have recently proposed a new “Yin/Yang” meta-

model [PS02a][PS02b] that integrates the syntax of XML with the semantics of

39 Initially, Boley proposes some fundamental changes to XML to support roles, but in the end
gives reductions to some custom XML vocabularies similar to Melnik’s attributes in the previous
section.

 122

RDF. Their approach is unusual, since they start from RDF’s XML serialization

(RDF/XML for short, not presented in this thesis) rather than its abstract meta-

model and place great value in staying compatible with existing XML tools.

Yin/Yang is also a rare example of a two-layer metamodel: the bottom data

layer records the structure and data types of the XML document, while the more

abstract top information layer records the semantics. 40 A model is always com-

posed of both layers; the data layer is not discarded.

The bottom layer is the XQuery [BC+02A] data model [FMG02], which relies on

the Post-Schema Validation Infoset of XML Schema [TB+01], which itself is built

upon the XML Information Set [CT01]. This modeling stack has a steep learning

curve, but allows the Yin/Yang metamodel to leverage the tools already devel-

oped for the incorporated standards, thus simplifying its implementation.

The top layer is a directed graph whose meaning is defined by a model theory

that, while logically very precise, can be difficult to understand. Each vertex in

the graph represents a resource and may be unlabelled or labelled with any

number of XML qualified names (Section 4.1.2). Resource classes are mapped to

their extension (instance set), but the mapping is “outside” the model and hence

essentially equivalent to attaching type labels to vertices. Unlabelled directed

edges connect the vertices and each vertex has a strict partial order for its outgo-

ing edges.

Translation rules connect the bottom layer to the top layer, assigning an arbitrary

meaning to any XML document. Each XML element and contiguous block of text

is translated to a vertex (representing a resource), and connected with ordered41

edges to the vertices of its children, if any. Each element’s name is mapped to a

vertex (representing a resource class) as well, and the element’s vertex added to

40 These layers are related to the semantic layers introduced in Section 2.3.1. The Yin/Yang data
layer could be inserted between the IMI syntax and object layers, while the Yin/Yang semantic
layer seems equivalent to the IMI object layer.
41 A special order attribute controls whether the document order is significant and should be rep-
resented in the graph.

 123

its extension. (Naturally, the type model is unstratified.) Attributes are trans-

lated in a similar manner: each attribute becomes a vertex that is connected to its

value vertex with an edge. Element vertices are connected to their attribute ver-

tices.

This translation is used for both XML and RDF/XML documents, with a few ex-

ceptions that take into account the meaning of certain reserved RDF attributes.

(For example, an rdf:resource attribute can be used to make a lateral link to an-

other resource by giving its URI, thus escaping the strict XML tree structure.)

Due to RDF/XML’s striped syntax [Bri02], this direct translation produces a se-

mantic graph different from—though translatable to—the usual RDF graph

model [Bec02]. Statements are mapped to vertices instead of edges, so that an

assertion results in the creation of a new predicate vertex with an incoming edge

from its subject vertex and an outgoing edge to its object vertex. The predicate

vertex is also the subject of an rdf:type statement that links it to its property type

vertex,42 differing from the RDF model where the predicate type is expressed us-

ing an edge label instead.

The Yin/Yang metamodel succeeds at integrating XML and basic RDF in a novel

fashion. However, it fails to deal with RDF containers and reification, whose in-

tegration might prove troublesome since their semantics are not a direct transla-

tion from the data model. The metamodel also makes the by-now familiar wrong

choice of putting identification and classification outside the model, though it

improves on OrdLab by allowing multiple names and types for each resource.

The partial edge order is also an improvement, and modeling statements with

vertices is a major advantage, since it makes them referenceable by other state-

ments (e.g., to assert provenance). Nonetheless, Yin/Yang is still not expressive

42 This approach causes an infinite regress, since the new statement needs another statement to
link it to the rdf:type property, etc. The authors introduce a tricky loop where a vertex is both the
subject and predicate of a statement to keep the model finite.

 124

enough to integrate Topic Maps models without a lift, since there is no way to

assign roles to edges—either by label or reference.

It is more difficult to evaluate the unusual two-layer architecture of the meta-

model. The XQuery data model allows the use of many standard (and powerful)

tools, and its familiarity to many XML developers may well increase the

Yin/Yang metamodel’s acceptance. On the other hand, coupling so closely to

RDF’s XML serialization is risky. If another standard serialization emerges—

XML or otherwise—its documents will need to be translated into RDF/XML by

another tool before they can be imported into Yin/Yang. In addition, when mu-

tating a model, it might be difficult to keep the semantic layer graph bipartite43 to

allow later export back to RDF. Actually, it might be altogether impossible to

mutate models directly at the semantic level, since the proposal does not include

any way to translate changes back to the data level to keep the layers synchro-

nized.

Overall, Yin/Yang is a gutsy and original attempt at a metamodel that integrates

very tightly with XML and its many adjoining specifications. Unfortunately, this

quality makes it useless at integrating metamodels that lack an XML serialization,

or whose XML format is too far from its semantic interpretation. Even stripped

of its data layer, the semantic metamodel keeps too many mechanisms on the

outside and lacks the referenceability needed to be truly expressive.

5.3. Merging RDF and Topic Maps
Just like for RDF and XML, no sooner had the first Topic Maps standard solidi-

fied than people noticed its proximity to RDF and tried to reconcile or further

differentiate the two [Pep00], according to their inclinations. Actually, most the

work was done by members of the Topic Maps community; the majority of RDF

supporters seem to consider Topic Maps as irrelevant or overly complex.

43 To stay compatible with the RDF metamodel, statement vertices can only serve as predicates, or
participate as subjects only in rdf:type statements.

 125

This section explores the various integration proposals for RDF and Topic Maps.

All of the proposals are expressed as mappings between the metamodels; no one

has tried to introduce a new metamodel except Bowers and Delcambre, whose

project has a wider scope and is discussed in Section 5.4.3. The mappings are in-

teresting historically, but also because the later ones take completely different

(and sometimes novel) approaches to the problem.

5.3.1. The Early Lifts
The very first mapping from Topic Maps to RDF is probably Vlist’s syntactic

translator [Vli01]. An XSLT [Cla99] transform maps directly from XTM to RDF

documents, taking advantage of similarities in their syntax. Vlist provides an ex-

ample of the translation, but does not reveal the exact style sheet he used (though

it is based on his earlier XLink transforms [Vli00]), so the mapping is impossible

to analyze in detail.

Moore made the first published attempt at integration [Moo01]. Starting with

inaccurate UML class models of both RDF and Topic Maps, he suggests a lift

from RDF to Topic Maps and vice-versa, providing the barest amount of detail

needed to convince reader that such lifts are possible. After this purely academic

exercise, he concedes that “modelling the model” will not bring about integration

and proceeds to construct object-level metamodel mappings from RDF to Topic

Maps and back. Both mappings are confusing and incomplete; Moore does not

deal with Topic Maps scopes, occurrences, subject types or names, nor does he

deal with RDF types, containers or reified statements. Furthermore, his RDF to

Topic Maps mapping also requires changes to the Topic Maps metamodel, and

the reverse mapping misunderstands the nature of RDF assertions. Overall,

Moore’s best contribution was to bring more attention to the topic of metamodel

integration, and to define the difference between object level lifts and mappings.

The next attempt was made by Lacher and Decker [LD01]. By leveraging an ex-

isting Topic Maps graph formalization [NB01], they quickly achieve a complete if

 126

awkward lift from Topic Maps into RDF, claiming that an object level mapping is

bound to lose information. Though they demonstrate the integration by showing

a query that spans Topic Map and RDF information, the example is just sleight-

of-hand. The user must know the precise boundaries of the lifted topic map, and

manually account for the semantic differences in the query. Thus, Lacher and

Decker do not achieve true semantic integration of the two metamodels.

Ogievetsky makes the final attempt of this initial trio [Ogi01]. The mapping is a

lift from Topic Maps to RDF, also based on [NB01]. Ogievetsky makes a good-

faith effort to take advantage of as much of RDF’s semantics as possible, trying to

avoid a lift. He is quickly defeated when he attempts to map Topic Maps asso-

ciations, since RDF only supports binary properties without roles. He must re-

sort to modeling each association as a separate resource, connected to its mem-

bers with statements that use the roles as predicates. This, and a few other in-

consistencies, clearly makes the mapping a lift, with all the concomitant disad-

vantages. Ogievetsky demonstrates—perhaps without being aware of it—that an

object level mapping from Topic Maps to RDF is impossible.

5.3.2. Two Semantic Mappings
After reviewing and evaluating the three previous proposals, Garshol [Gar01b]

concludes that the mappings proposed thus far are inadequate. Based on his

analysis of equivalent sample models in both RDF and topic map form, he real-

izes that an object level mapping from Topic Maps to RDF is impossible, since

RDF’s relationships are not sufficiently expressive. In passing, he suggests a lift

less awkward than those previously proposed, but then quickly moves on to dis-

cussing a semantic level mapping. Since no single semantic level mapping

would work for all models (see Section 2.4.4), Garshol proposes a rule-based

mapping generator. Naturally, the user must manually specify topic map que-

ries [Gar01a] and RDF triples to be output for each ontology, but this allows for a

custom translation that can find the most natural RDF expression for any Topic

 127

Map assertion. Unfortunately, there is still no way to work around RDF’s lack of

n-ary relationships, so some associations will have to be lifted.

Turning to the other direction, Garshol asserts that an object level mapping from

RDF to Topic Maps is also impossible, paradoxically because Topic Maps’ se-

mantics are too rich! Indeed, while Topic Maps’ structure is certainly flexible

enough to integrate RDF models, the standard also specifies primitive mecha-

nisms for constructs that would be ad-hoc in RDF (e.g., names, scoping). Hence,

he argues, any mapping that does not take these constructs to their proper Topic

Maps equivalents is flawed, since the resulting topic map will not express com-

mon features in a way that Topic Maps processors will understand. He then

proposes a semantic level rule-based mapping generator similar to the one above,

which allows a user to specify the exact Topic Maps equivalent of each RDF

property.

Garshol is completely right on at least one count: information cannot be created

out of thin air. However, that does not automatically imply that object level

mappings from information-poor to information-rich metamodels are impossible

or useless. Indeed, a well-designed expressive metamodel should degrade grace-

fully when insufficient information is supplied, and allow the meaning of ad-hoc

constructs to be filled in after they have been integrated. The Topic Maps meta-

model is not well suited in this regard; the advanced features are primitive and

critical to the correct functioning of Topic Maps application, and hence must be

translated immediately. Given these constraints, Garshol’s semantic mapping

generator does a good job, but it also reveals that Topic Maps are a bad target for

metamodel integration.

5.3.3. Occurrences as Statements
Following up on his academic first attempt, Moore comes back with some practi-

cal suggestions [Moo02] that can be easily implemented and do not require

changes to the metamodels. He concentrates on an object level mapping from

 128

RDF to Topic Maps, augmented with a handful of semantic mappings of com-

mon ontologies. RDF statements are mapped to Topic Maps occurrences, the

predicate property becomes the occurrence’s type, and a little prestidigitation en-

sures that both literals and resources get sensible equivalents.

Addressing Garshol’s criticisms of object level mappings,44 Moore notes that

some of Topic Maps’ advanced features are often expressed using a small set of

standard predicates in RDF. He therefore adds primitive translations for rdf:type,

rdfs:label, and the Dublin Core [WK+99] properties dc:title and dc:identifier. While

the effect of adding just four extra translations may seem small, keep in mind

that these are terms from popular upper ontologies, so any more specific proper-

ties are likely to be specializations and will be translated as well. There is no

translation that creates scopes, which is understandable since the RDF commu-

nity has not yet come to an agreement on how to represent contexts.

Thus far, the mapping could be turned around easily to take topic maps to RDF

models, but Moore has not yet dealt with the thorny topic of associations; he

never does. He says nothing about creating associations from RDF statements,

and vaguely suggests a rule-based scheme similar to Garshol’s for creating RDF

statements from associations. Hence, the end product of Moore’s paper is a sim-

ple object level mapping of the RDF structure and a few common terms into a

subset of Topic Maps that excludes associations. This mapping is quite similar to

the RDF introduced in Section 4.2, when the latter’s results are interpreted from a

Topic Maps point of view.

5.3.4. The Syntactic Web
Robie proposes a structural integration of RDF and Topic Maps into XML

[Rob01]. Though both the RDF and Topic Maps standards already define XML

serializations, they are very flexible, allowing the same semantic structure to be

written down in many different ways. This flexibility makes them difficult to

44 Actually, Moore was apparently unaware of Garshol’s paper since he does not reference it.

 129

query directly, since any syntax-based query has to take into account all possible

ways to serialize a fact. Robie solves this problem by proposing normal serial-

ized forms for both RDF and Topic Maps; original documents are deserialized

into the appropriate model then reemitted in the normal form before being que-

ried. The normal forms are very regular and closely match the structure of the

abstract models, which makes them reasonably easy to query with XQuery

[BC+02a].

An important detail is that the models are not completed with logical entailments

before being reemitted. In RDF, for example, this means that if in the original

document A is an rdfs:subClassOf B, and X rdf:type A, the fact that X rdf:type B will

not appear in the normalized document. To get around this problem, Robie in-

troduces a passel of XQuery functions that perform the required entailments on

the fly; for example, instance-of-class recursively computes the transitive closure

of rdfs:subClassOf.

In the end, there is no semantic integration, only normalized but disjoint syn-

taxes for the two metamodels. Robie’s effort also demonstrates the futility of try-

ing to operate directly on the syntactic representation of a model, even one that

matches the structure very closely: the extra functions wind up creating tran-

sient fragments of the abstract model anyway.

5.4. Other Metamodels
Many other metamodels have informed the design of Braque. Due to the large

number of candidates, this section groups them into broad categories and gives

only a few general comments for each group.

5.4.1. Directed Binary Graphs
Labelled directed graphs are the most popular way of modeling semistructured

data. Some systems that use them are OEM [PGW95][ASB99] (Object Exchange

Model), Rigi [Won98], SHriMP [Sto98] (Simple Hierarchical Multi-Perspective

 130

views), GOOD [GP+94] (Graph-Oriented Object Database), the Associative

Model of Data [Wil00], Conceptual Graphs [SD99], and, of course, RDF. All but

the last two are just data models, with no intrinsic meaning associated with the

structures, which makes them unusable for information integration. However,

even gifted with a standard interpretation, these metamodels are not expressive

or flexible enough to integrate information with ease.

The main problem with directed graph metamodels, as mentioned in the discus-

sion of RDF (Section 5.1.2), is that edges cannot be referenced. To participate in

assertions, edges must be manually lifted (reified) into vertices, all the while en-

suring that the whole model is at the same level of reification to provide a se-

mantically level ground for queries and navigation. To avoid the reification,

some metamodels support attributed edges (and sometimes vertices). Attributes

are labelled primitive values attached to an edge. This change merely pushes the

problem back one step—attributes cannot be referenced; do they need second-

order attributes?—while making the metamodel more complex.

Directed graphs also do not support n-ary (n>2) relationships, forcing the use of

reification to obtain this feature. Other common issues include unreferenceable

human-readable labels for which it is not possible to provide further machine-

processable information, and a lack of ordering features.

Simple directed graph metamodels are usually sufficient if ontologies and mod-

els are created from scratch, but are not up to the task of integrating information.

5.4.2. Advanced Graphs
In response to the limitations of binary directed graphs, many researchers have

started developing other varieties of graph metamodels (e.g., TGraphs [EF94]).

The last few years have seen a number of movements towards an all-

encompassing, universal graph metamodel that could be used in all domains.

Some contenders include GraphML [BE+01], GXL [Win01] (the Graph Exchange

Language), and XGMML [PK01] (Extensible Graph Markup and Modeling Lan-

 131

guage). Although the details differ, the idea behind all of these proposals is to

extend the metamodel to handle all the types of graphs used in mathematics:

graphs with directed, undirected and mixed edges, hypergraphs, hierarchical

graphs, ordered graphs, etc.

These graphs make great data structures, but are still not appropriate for infor-

mation integration. First, it is still impossible to refer to edges (that is, edges are

not vertices). The usual attribute workaround adds complexity to the metamodel,

especially if composite or vertex attribute values are allowed. Some of the

graphs also include a restrictive stratified type system; for example, GXL uses

UML. Finally, some of these proposals evolved from the internal data models of

graph visualization applications and pollute the metamodel with primitive fea-

tures specific to graph rendering.

5.4.3. Odds and Ends
Bowers and Delcambre have done some interesting work on superimposed in-

formation and metamodel conversion [BD00]. They propose a metamodel based

on directed graphs, with a minimal ontology of two special kinds of vertices (lit-

erals and references) and two special kinds of edges (classification and generali-

zation). Mappings lift other metamodels into their own, customized to the exact

depth of reference needed by the source metamodel. They supply mappings for

XML and RDF, and suggest that a mapping for Topic Maps is possible as well.

The lifted models are of course not semantically compatible, but this approach

concentrates on conversion, not integration.

The Hypernode Model is a nested-graph model employed by Hyperlog [PH01b].

Each hypernode contains a non-well-founded set of hypernodes, and a separate

set of directed (but unlabeled) edges. It is quite powerful and has a very well

developed formal query and programming language. Programs and the type

system are incorporated into the graph. It is probably the metamodel most simi-

lar to Braque, but some differences make it inappropriate for information inte-

 132

gration. Hypernodes are strongly typed and have no intrinsic concept of order.

Worst of all, the edges cannot be referenced.

There are many other ways to model information. [AP96] reviews the use of sets

in information theory. The Notion System (http://www.notionsystem.com/) and

e4graph (http://e4graph.sourceforge.net/) are two graph-like metamodels with work-

ing implementations but limited formal documentation. Finally, pure logic rep-

resentations eschew structural models in favour of direct logical formulas. [SD99]

provides a good introduction to these kinds of metamodels; relevant examples

include KIF [ANS98] (Knowledge Interchange Format), DAML (the DARPA

Agent Markup Language, http://www.daml.org/) and Cyc (http://www.cyc.com/).

 133

6. Conclusions
This final chapter summarizes and evaluates the contributions made by this the-

sis, and speculates on fruitful avenues for future work in this area.

6.1. Evaluation and Contributions
The main contribution of this thesis is the Braque metamodel and the integration

mappings of XML, RDF and Topic Maps. There are few completely new ideas in

Braque: only infinite reflection depth (Section 6.1.1) and the metatype constraint

(Section 6.1.4) cannot be found in any other metamodels. The remainder of

Braque’s innovation lies in recognizing the usefulness of existing features in the

context of semantic web information integration, and in constructing a coherent

and compact metamodel and upper ontology that implement those features.

Braque fully implements all the features of the IMI object layer—as do most of

the other metamodels. However, certain aspects of Braque’s design give it supe-

rior expressive power: Braque can model constructs that other metamodels ei-

ther cannot model at all, or only with great difficulty (Sections 6.1.1 and 6.1.2).

Section 6.1.3 justifies why Braque is elegant, and explains how it is amenable to a

clean implementation in an object-oriented language. Finally, Section 6.1.4 looks

at the specific contributions made in the naïve upper ontology and the integra-

tion of the three metamodels.

6.1.1. Deep Reflection
Braque’s treatment of reification is exceptionally powerful. To understand why,

define reflection depth as the number of times a non-referenceable model primitive

can be successively reified. When a primitive is first reified, it is decomposed

into finer primitives without destroying the original. One of those primitives is

referenceable and reifies the original. The other primitives encode the informa-

tion content of the original and are usually non-referenceable. Those primitives

can then sometimes be further reified, etc. The maximum number of such de-

 134

composition levels supported by a metamodel is its reflection depth. Further-

more, for the process to qualify as reflection, the primitives that result from reifi-

cation at each level must be directly linked to the original primitive rather than

just be a detached description. (In other words, any changes in the original must

be reflected by its reification and vice-versa. Newcomb calls this “preemptive

reification” [New02].)

According to this definition, most graph-based metamodels (e.g., OEM, OrdLab

Graphs) have a reflection depth of 0, since there is no way to reference edges.

RDF also has a reflection depth of 0 since its reified statements are not connected

to actual statings. The Yin/Yang metamodel has a reflection depth of 1, since

each assertion is represented with a referenceable vertex and two edges. The

Topic Maps metamodel has a reflection depth of 2: not only can each association

be referenced, but the fact that a subject plays a role in it (a casting) also has an

identity.

A reflection depth of at least 1 is needed to enable provenance tracking that is not

built in as a special mechanism. Newcomb argues [New02] that there is no prac-

tical need for reflection more than 2 levels deep. He may well be right; no model

in this thesis needs to exceed this limit. However, when integrating metamodels,

the origin’s reflection depth cannot exceed that of the target without forcing a lift.

This (among other reasons) is why it is impossible to map Topic Maps into RDF

without lifting at least one level, to make the mapped associations reference-

able.45

Braque has an infinite reflection depth (Section 3.3.3), so that metamodels of any

depth can be mapped without lift. This maintains an even semantic level across

the entire integrated model, which is necessary to ensure that it has a consistent

interpretation and can be uniformly queried. As a welcome side effect, the infi-

45 A true mapping would need to lift two levels, so that the castings would be referenceable.
None of the mappings presented in Section 5.3 do this since Topic Maps have only recently
gained their second level of reflection, and no models make references to castings yet.

 135

nite reflection depth also enables easy provenance tracking. It is also more ele-

gant to provide a self-recursive definition for an infinite reflection depth than to

define each level explicitly.

To the best of my knowledge, Braque’s infinite reflection depth is a unique con-

tribution to metamodel design. Moreover, the explicit definition of reflection

depth and the claim that it is a determinant of expressive power appear to be

new and could be considered a contribution in their own right.

6.1.2. Expressive Power
Braque’s implementation of the other object layer features is not unique, but a

few further aspects bear calling some attention to. Braque implements ordering

as a primitive. This obviates the need for workarounds such as ordinal proper-

ties or successor links, which cannot order dense sets and curtail implementation

opportunities (see next section). The primitive ordering makes it easy to inte-

grate ordered metamodels such as XML, and allowing partial orders allows or-

dered and unordered elements to be merged without losing (or adding) informa-

tion. Some other metamodels have ordering as a primitive, but very few allow

partial orders.

Braque models n-ary (n>2) relationships directly, allowing them to be expressed

at the same semantic level as binary ones. This is by no means rare or innova-

tive—after all, the relational model is based on n-tuples—but seems to have

fallen by the wayside with the current batch of graph-based metamodels.

Picking the right primitives for a metamodel is important, but just as important

is choosing which features should not be primitive. In Braque, neither identifica-

tion nor classification is primitive; rather, they are second-order features intro-

duced in the naïve upper ontology. This allows the agent to bring to bear the full

power of the model on their application instead of being restricted to primitive-

specific functionality. Reasoning, queries, etc., work the same way as for any

other relation. Reasoning about identification by URI gives an agent the chance

 136

to deal with ambiguity, an option that is sadly lacking in the current crop of se-

mantic web metamodels. While this thesis does not propose specific strategies

for dealing with ambiguous identifiers, it does not need to: agents can improvise

solutions using Braque’s existing features.

The critiques in Chapter 5 and the integration of three heretofore-unreconciled

metamodels provide further evidence of Braque’s flexibility and expressive

power.

6.1.3. Elegance
Hyper pomsets are a very elegant primitive when implementing a metamodel in

an object-oriented language: they map naturally to the concept of collections, an

ineluctable component of any programming environment. Collections are a fa-

miliar construct to every developer, and the implementation of any metamodel

must use them in its programming interface in some way. Letting collections be

the model strips a layer of indirection, and should make the system’s interface

easier to understand. While this was borne out in my own experience of using

the implementation, the hypothesis has not been validated with a user study of

independent developers.

The ordering design also works nicely with an object-oriented implementation.

Since ordering is a primitive, its implementation can be independently optimized

for each storage medium, and access provided with a choice of iterators, indexed

retrieval and the head/tail technique (great for recursion). This contrasts with

unordered metamodels where, for each ordered structure, the model’s author

must choose between ordinal primitives and linked lists. Code must then be

written specifically for the chosen data structure, unacceptably increasing cou-

pling to information best left hidden.

Defining ordering as local to each nest, rather than global to the whole model,

also gives us a nice locus of control. In the implementation, each nest has re-

sponsibility for maintaining the order of its own elements, and can expose any

 137

appropriate interface for manipulating this order. Once again, this should dove-

tail nicely with developers’ intuitive ideas about collections.

Chapter 5 discussed some other ugly features of other metamodels that are miss-

ing from Braque, which could be considered as evidence of elegance by omission.

In the end, though, elegance is in the eye of the beholder, and only time (and user

studies) will tell if Braque has attained this goal.

6.1.4. Integration
The object level mapping of RDF and Topic Maps into Braque presented in this

thesis is, to the best of my knowledge, the only complete lossless integration of

the two metamodels. RDF and Topic Maps are integrated not just structurally,

but also semantically, so that agents do not need to be aware of the boundaries

between the amalgamated models. The mapping includes some of the more eso-

teric features of both metamodels, including RDF containers, RDF reification and

Topic Maps scopes, which are ignored by the other extant mappings. Addition-

ally, a very natural integration of XML at a structural level is supported as well,

including full modelling of qualified names.

The integration is not perfect. There is no mapping for RDF schema (domain and

range specifications), and no way to explicitly represent RDF’s open-world as-

sumption. The ad-hoc solution to class punning is also somewhat ugly and

needs to be reviewed.

The process of developing the integration mappings also resulted in some inci-

dental contributions. The analysis of the different kinds of mappings relative to

the IMI Reference Model, and the explanation why a lift should not count as in-

tegration, apparently have not been put in writing before. The discovery that a

metatype constraint can be defined uniformly for all uses of the extension rela-

tion and its formulation for an unstratified, multiple classification metamodel are

also new.

 138

6.2. Future Work
This thesis has only scratched the surface of semantic web metamodels and

metamodel integration. The work presented can be greatly extended, both in

depth and in breadth. This section mentions only a few possibilities for future

research.

6.2.1. Theory
Hyper pomsets are a powerful metamodel primitive, but they could still be im-

proved. For one, not everything is easily modeled as a nest with discrete mem-

bers. The theory of mereology deals with constructs that can be subdivided but

don’t necessarily consist of discrete elements. For example, consider the concept

of knowledge: it is possible to possess some knowledge, to accumulate knowl-

edge, etc., but we do not think of knowledge as a set of “knowledge atoms”.

Mereotopology is a related discipline that applies mereology to the study of

space by considering whole-part relationships between shapes rather than think-

ing of them as made up of an infinite number of dimensionless points. It would

be interesting to see whether mereology and mereotopology can be integrated

into the same semantic framework as hyper pomsets.

Another issue is that when reasoning on the semantic web an agent is almost

never in possession of all the relevant information. In terms of nests, this means

that the agent may now know the exact membership of a nest (e.g. a classifier or

a relation). If an element is not in the nest, does it mean that the nest definitely

does not contain the element (the closed-world assumption), or simply that the

agent doesn’t know whether the nest contains the element (the open-world as-

sumption)? Normally, a metamodel makes only one of these assumptions to

provide a consistent interpretation for its constructs. (For example, RDF makes

the open-world assumption.) Instead of making a global assumption for Braque,

it would be interesting to look at partial sets, which—in contrast with “crisp”

sets—permit an element to maybe be part of a set. The closed- vs. open-world de-

 139

cision could then be made on a nest-by-nest basis: if a nest was known to be

closed it would be crisp, otherwise it would maybe contain every element that

was not known to be definitely in or out of the nest. Partial sets may also help

find a better solution to the problem of class punning (see Appendix C.4) and

may have other interesting applications in fuzzy logic, and in representing the

consequences of logical paradoxes.

Braque is also in dire need of more formality. Hyper pomsets (or partial hyper

mereo-pomsets, if the suggestions above are adopted) need to be formally de-

fined, perhaps with an appropriate axiomatic theory. The meaning of the meta-

model also needs to be formalized, probably by building a model theory for

Braque, though an axiomatization that maps it to some other logic (e.g., F-Logic

[KLW95], or some description logic) might be another option. Without a seman-

tic interpretation, most logicians would consider Braque to be a mere data model.

Mutation of the model should also be formalized with an algebra for the pomsets

[GM95], and of course reified within the model itself to complete the current

static reflection.

Every self-respecting data model also needs a query language, since structural

navigation becomes impractical as model size increases. For Braque, it would be

useful to have a more powerful logical inference language that could express the

equations used throughout this thesis with a simpler syntax; Equation 4-13, for

one, should not look so convoluted. Queries are then just a special case of infer-

ence. It would be interesting to explore the many possible approaches to an in-

ference language (e.g., algebra, constraint systems) and compare their expressive

power and user friendliness. Of course, both the results of the inferences and the

inference language itself ought to be represented within the Braque metamodel—

this is likely to increase the languages’ power, but may also make the implemen-

tation intractable. Lastly, the user must be given control over the selective appli-

cation of inferences: not all equations hold globally.

 140

The naïve upper ontology will also need to be updated to keep pace with these

improvements. With an inference engine available, work can begin on integrat-

ing the various schema constraint facilities offered by other metamodels. Infer-

ence could also be used for synthetic class constructors (favoured by description

logic mavens) and property inheritance (beloved of object-oriented program-

mers). Finally, the metatype constraint (Equation 3-12) and the difference be-

tween expansion and extension should be investigated further. Other metamod-

els must be surveyed to determine whether similar constraints are present and

what forms they take, as well as the consequences of these design decisions. Fur-

ther study could validate the generalized form of the constraint presented here

and point out hidden flaws in other metamodels.

6.2.2. Integration
The integration of XML, RDF and Topic Maps presented in this thesis is just a

beginning. Integrating natural language scoping is one obvious improvement

that could be done right away. Providing a (partial) mapping from Braque back

into the other metamodels would enable Braque to be used for model translation.

Once Braque has a model theory, it would also be important to show that the

mappings preserve meaning by proving that, for every model, the original model

theory and Braque’s model theory give the same interpretation.

There is also more work to be done on the integration mappings themselves.

Since RDF and Topic Maps are both still evolving, their Braque mappings need

to track this development. The structural XML mapping should also be aug-

mented with some semantics, perhaps derived from an external description in a

language such as XML Schema or the Meaning Definition Language (MDL)

[Wor01]. Ontologies and mappings could also be devised for constructs defined

by XPath, XPointer, and XLink.

 141

Naturally, there is a nearly endless supply of other metamodels that could be in-

tegrated. While the specific choices will be driven by application needs, a few

particularly interesting selections include:

• UML [OMG01], and its meta-metamodel the Meta-Object Facility (MOF)

[OMG02], are a pair of stratified metamodels popular in object-oriented

software development and other modeling endeavours. Many other meta-

models conform to the MOF, so integrating these metamodels would give

Braque access to a great deal of instance data.

• The web services effort is spurning RDF and developing the Universal De-

scription, Discovery and Integration language (UDDI) [BC+02] instead.

Clients can query service traders to locate appropriate services whose func-

tions are described with a UDDI model. This is a burgeoning area (both of

research and practical implementation) and giving Braque and understand-

ing of UDDI models might open other opportunities in the future.

6.2.3. Implementation
Just like every other proof-of-concept, the implementation written for this thesis

could use a good redesign and a lot of optimization, but this section focuses on

future work specific to Braque.

The current implementation was written in Java, a conventional object-oriented

programming language. Ideas are instances of an Idea class, classifiers are in-

stances of a Nest class whose members are ideas, etc. The semantics of the

Braque metamodel and Java are completely disjoint; in effect, the Braque world

is using Java’s object system as syntax. This suggests an intriguing possibility:

can Braque’s semantics be aligned with those of a sufficiently flexible object-

oriented language, so that the language itself becomes the object layer and

Braque fills in the gaps with a thin semantic layer on top? Such an amalgamation

would require the language either to be classless, or to sport an unstratified type

system with multiple dynamic classification, at a minimum. Object-oriented lan-

 142

guages that fit these requirements are rare, and the integration is likely to be

technically tricky, but the effort should be worth it: instead of interacting with

the model through APIs, Braque would become the language, making the pro-

gramming interface seamless.

Leaving this radical approach aside for now, a conventional implementation

could also be improved in many ways:

• Once two-way mappings are available, the knowledge base could emulate

common APIs of the other metamodels, thus enlarging the pool of software

able to manipulate a Braque model.

• Designing and implementing a modular, complete and efficient inference

engine is a multi-year research project in and of itself.

• Right now, the Braque knowledge base needs to import and export docu-

ments to share information. To truly establish a semantic web, the knowl-

edge base should be endowed with a direct communication interface. Some

options include an HTTP-based resource gateway where each idea is given

a URI and interaction proceeds through HTTP methods, a SOAP server that

exposes a custom API, and a peer-to-peer distributed knowledge network.

Finally, both the current implementation and any future ones need extensive us-

ability studies to determine what programming interface developers prefer.

6.2.4. Follow-On Work
While the previous sections dealt with further work on the Braque metamodel

itself and its intended use as an integration platform, many other applications

could be built on such a flexible metamodel core. A generic model visualization

and manipulation utility would be a good start, enabling end users to directly

control the structure of a model. A more advanced visualization framework de-

sign would allow additional renderers to be plugged in dynamically, embedding

specialized displays adapted to the extended semantics of parts of the model.

 143

Though there is a lot of previous work in this area, most concentrates on visualiz-

ing simple directed graphs or object-like frames that follow strict schemas.

Other domain-specific applications of Braque include:

• modelling multi-dimensional programs—the original motivation for

Braque’s inception (as described in Appendix C.1);

• reasoning about concurrent processes, which can be modelled with pomsets;

• storing the knowledge an automated agent has acquired while going about

its tasks on the semantic web; and

• helping people deal with information overload by letting them easily record,

organize, link and annotate all the information they acquire.

 144

References
All references to W3C documents list the URI of the “latest version”, since the

URI is shorter and the most recent revision of a recommendation is likely to be of

more interest than the exact one in effect at the time of writing of this thesis.

However, should you wish to see this older version, you can follow the link from

the current document to the older one identified by the publication date given in

the reference.

[Acz88] Peter Aczel: Non-Well-Founded Sets. CSLI Publications, Stanford, 1988.

[ANS98] Knowledge Interchange Format. Draft proposed North American
Standard, NCITS.T2/98-004. http://logic.stanford.edu/kif/dpans.html

[AO+02] Pascal Auillans, Patrice Ossona de Mendez, Pierre Rosenstiehl and
Bernard Vatant: A Formal Model for Topic Maps. Proceedings of the
First International Semantic Web Conference, Sardinia, Italy, June
2002.

[AP96] Varol Akman and Müjdat Pakkan: Nonstandard Set Theories and
Information Management. Journal of Intelligent Information Systems,
Volume 6 Number 1, 1996, pp. 5-31.

[ASB99] Serge Abiteboul, Dan Suciu, and Peter Buneman: Data on the Web:
From Relations to Semistructured Data and XML. Morgan Kaufmann
Publishers, October 1999.

[BC+02a] Scott Boag, Don Chamberlin, Mary Fernández, Daniela Florescu,
Jonathan Robie and Jérôme Siméon, editors: XQuery 1.0: An XML
Query Language. W3C Working Draft, August 2002.
http://www.w3.org/TR/xquery/

[BC+02b] Tom Bellwood, Luc Clément, David Ehnebuske et al., editors: UDDI
Version 3.0. Published Specification, July 2002.
http://uddi.org/pubs/uddi_v3.htm

[BD00] Shawn Bauers and Lois Delcambre: Representing and Transforming
Model-Based Information. Proceedings of the Semantic Web Workshop
2000, Lisbon, Portugal, September 2000.
http://www.ics.forth.gr/proj/isst/SemWeb/proceedings/session1-1/paper.pdf

[BE+01] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt,
and M. Scott Marshall: GraphML Progress Report: Structural Layer
Proposal. Proceedings of Ninth International Symposium on Graph
Drawing, Vienna, September 2001. http://www.inf.uni-
konstanz.de/~brandes/publications/behhm-gprsl-01.pdf

 145

[Bec02] Dave Beckett, editor: RDF/XML Syntax Specification (Revised). W3C
Working Draft, March 2002. http://www.w3.org/TR/rdf-syntax-grammar/

[Ber98] Tim Berners-Lee: Why RDF model is different from the XML model.
Design Issues draft, October 1998.

[BG02] Dan Brickley and R. V. Guha, editors: RDF Vocabulary Description
Language 1.0: RDF Schema. W3C Working Draft, April 2002.
http://www.w3.org/TR/rdf-schema/

[BHL01] Tim Berners-Lee, James Hendler, Ora Lasilla. The Semantic Web.
Scientific American, May 2001.

[BHL99] Tim Bray, Dave Hollander and Andrew Layman, editors: Namespaces
in XML. W3C Recommendation, January 1999.
http://www.w3.org/TR/REC-xml-names/

[BM+98a] Tim Berners-Lee, MIT/LCS, Roy Fielding, U.C. Irvine, Larry Masinter
and Xerox Corporation: Uniform Resource Identifiers (URI): Generic
Syntax. The Internet Society, RFC 2396, 1998.

[BM+98b] William J. Brown, Raphael C. Malveau, Hays W. McCormick III and
Thomas J. Mowbray: Anti Patterns: Refactoring Software, Architectures,
and Projects in Crisis. John Wiley & Sons, New York, 1998.

[BM01] Paul V. Biron and Ashok Malhotra, editors: XML Schema Part 2:
Datatypes. W3C Recommendation, May 2001.
http://www.w3.org/TR/xmlschema-2/

[Bol01] Harold Boley: A Web Data Model Unifying XML and RDF. Draft,
September 2001. http://www.dfki.uni-kl.de/~boley/xmlrdf.html

[Bou00] Ronald Bourret: Namespace Myths Exploded. XML.com, O’Reilly,
March 2000. http://www.xml.com/pub/a/2000/03/08/namespaces/index.html

[BPS00] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, editors:
Extensible Markup Language (XML) 1.0, 2nd ed. W3C Recommendation,
October 2000. http://www.w3.org/TR/REC-xml

[Bri02] Dan Brickley: RDF: Understanding the Striped RDF/XML Syntax.
Version 1.30, August 2002. http://www.w3.org/2001/10/stripes/

[Car60] Lewis Carroll: The Annotated Alice With an Introduction and Notes by
Martin Gardner. Bramhall House, 1960, Through the Looking-Glass,
Chapter 8, pp. 306-307.

[CD99] James Clark and Steven DeRose, editors: XML Path Language (XPath)
Version 1.0. W3C Recommendation, November 1999.
http://www.w3.org/TR/xpath

[Cla99] James Clark, editor: XSL Transformations (XSLT) Version 1.0. W3C
Recommendation, November 1999. http://www.w3.org/TR/xslt.

http://www.w3.org/TR/REC-xml-names/
http://www.xml.com/pub/a/2000/03/08/namespaces/index.html

 146

[CM01] James Clark and Murata Makoto, editors: RELAX NG Specification.
OASIS Committee Specification, December 2001. http://www.oasis-
open.org/committees/relax-ng/spec-20011203.html

[Cov98] Robin Cover: XML and Semantic Transparency. Cover Pages,
November 1998. http://xml.coverpages.org/xmlAndSemantics.html

[CT01] John Cowan and Richard Tobin: XML Information Set. W3C
Recommendation, October 2001. http://www.w3.org/TR/xml-infoset/

[DC+02] Mike Dean, Dan Connolly, Frank van Hermelen et al., editors: OWL
Web Ontology Language 1.0 Reference Description. Draft document, June
2002. http://lists.w3.org/Archives/Public/www-webont-wg/2002Jun/att-0124/01-
owl-ref-proposed.html

[DMD01] Steven DeRose, Eve Maler and Ron Daniel Jr., editors: XML Pointer
Language (XPointer) Version 1.0. W3C Recommendation, September
2001. http://www.w3.org/TR/xptr/

[DMO01] Steve DeRose, Eve Maler and David Orchard, editors: XML Linking
Language (XLink) Version 1.0. W3C Recommendation, June 2001,
http://www.w3.org/TR/xlink/.

[Doc01] Corey Doctorow: Metacrap: Putting the torch to seven straw-men of the
meta-utopia. August 2001. http://www.well.com/~doctorow/metacrap.htm

[Dum02] Edd Dumbill: Finding friends with XML and RDF. IBM
developerWorks, XML Watch column, June 2002. http://www-
106.ibm.com/developerworks/xml/library/x-foaf.html

[Ebe02] Andreas Eberhart: Survey of RDF Data on the Web. Technical Report,
International University in Germany, August 2002. http://www.i-
u.de/schools/eberhart/rdf/rdf-survey.pdf

[EF94] Jürgen Ebert and Angelika Franzke: A Declarative Approach to Graph
Based Modeling. Technical Report 3-94, Universität Koblenz-Landau,
1994.

[Euz02] Jérôme Euzanat, editor: Research challenges and perspectives of the
Semantic Web. Report of the EU-NSF strategic workshop, Sophia-
Antipolis, France, January 2002. http://www.ercim.org/EU-NSF/semweb.html

[Fie99] Roy Fielding et al.: Hypertext Transfer Protocol—HTTP/1.1. Internet
Engineering Task Force, Request For Comments 2616, Draft Standard,
June 1999.

[FMG02] Mary Fernández, Jonathan Marsh and Marton Nagy, editors: XQuery
1.0 and XPath 2.0 Data Model. W3C Working Draft, August 2002.
http://www.w3.org/TR/query-datamodel/

[For02] Paul Ford: August 2009: How Google beat Amazon and Ebay to the
Semantic Web. July 2002. http://ftrain.com/google_takes_all.html

 147

[Fow00] Martin Fowler with Kendall Scott: UML Distilled Second Edition.
Addison-Wesley, 2000.

[Gar01a] Lars Marius Garshol: tolog: A topic map query language. Proceedings of
XML Europe 2001, Berlin, May 2001.
http://www.ontopia.net/topicmaps/materials/tolog.html

[Gar01b] Lars Marius Garshol: Topic maps, RDF, DAML, OIL: A comparison.
Proceedings of XML Conference & Exposition 2001, Orlando, Florida,
December 2001. http://www.idealliance.org/papers/xml2001/papers/html/05-04-
04.html

[Gar02] Lars Marius Garshol: The Linear Topic Map Notation: Definition and
introduction, version 1.2. Ontopia A/S, May 2002.
http://www.ontopia.net/download/ltm.html

[GB02] Jan Grant and Dave Beckett, editors: RDF Test Cases. W3C Working
Draft, April 2002. http://www.w3.org/TR/rdf-testcases/

[GM02] Lars Marius Garshol and Graham Moore: The Standard Application
Model for Topic Maps. ISO JTC1/SC34 N329, July 2002.
http://www.y12.doe.gov/sgml/sc34/document/0329.htm

[GM95] Stephane Grumbach and Tova Milo: An Algebra for Pomsets.
Proceedings of the Fifth International Conference on Data Base Theory
(ICDT'95), Prague, Lecture Notes in Computer Science 893, pages 191-
207, Springer-Verlag, 1995.

[GP+94] Marc Gyssens, Jan Paredaens, Jan Van den Bussche, and Dirk van
Gucht: A Graph-Oriented Object Database Model. IEEE Transactions on
Knowledge and Data Engineering, Vol. 6, No. 4, 1994, pp. 572-586.

[GR89] Adele Goldberg and David Robson: Smalltalk-80 The Language.
Addison-Wesley, 1989, p. 247.

[Gra02] Marc de Graauw: Note on issues to be decided on scope. ISO JTC1/SC34
N327, July 2002. http://www.y12.doe.gov/sgml/sc34/document/0327.htm

[Gri82] Robert L. Griffith: Three Principles of Representation for Semantic
Networks. ACM Transactions on Database Systems, Vol. 7, No. 3,
September 1982, pp. 417-442.

[Haw02] Sandro Hawke: Explicit disambiguation via RDF bNodes, more process.
RDF-interest mailing list, April 2002.
http://lists.w3.org/Archives/Public/www-rdf-interest/2002Apr/0327.html

[Hay02a] Patrick Hayes, editor: RDF Model Theory. W3C Working Draft, April
2002. http://www.w3.org/TR/rdf-mt/

[Hay02b] Patrick Hayes: rdfs:subClassOf and metaclasses. RDF-comments
mailing list, July 2002. http://lists.w3.org/Archives/Public/www-rdf-
comments/2002JulSep/0017.html

http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/TR/rdf-mt/

 148

[HMS02] Patrick Hayes, Sergey Melnik and Patrick Stickler, editors: RDF
Datatyping. W3C Working Draft, April 2002. http://www-
nrc.nokia.com/sw/rdf-datatyping.html

[How01] Denis Howe, ed. The Free On-line Dictionary of Computing.
http://www.foldoc.org/

[ISO86] ISO JTC1 SC34: Standard Generalized Markup Language. ISO 8879:1986,
1986.

[ISO99] ISO JTC1 SC34: Topic Maps. ISO 13250:2000, December 1999.

[Kal02] Aditya Kalyanpur: RDF Web Scraper.
http://www.ece.umd.edu/~adityak/running.html, visited June 29, 2002.

[KC02] Graham Klyne and Jeremy Carroll, editors: Resource Description
Framework (RDF): Concepts and Abstract Data Model. W3C Working
Draft, August 2002. http://www.w3.org/TR/rdf-concepts/

[Kle01] Kevin C. Klement: Russell’s Paradox. In The Internet Encyclopedia of
Philosophy, edited by James Fieser and Bradley Dowden, 2001.
http://www.utm.edu/research/iep/p/par-russ.htm

[KLW95] Michael Kifer, Georg Lausen and James Wu: Logical Foundations of
Object-Oriented and Frame-Based Languages. Journal of the ACM,
volume 42, pp. 741-783, 1995.

[LD01] Martin S. Lacher, Stefan Decker: On the Integration of Topic Maps and
RDF Data. Proceedings of the Semantic Web Working Symposium
2001, Stanford University, California, USA, July 2001.

[Lis88] Barbara Liskov: Data Abstraction and Hierarchy. SIGPLAN Notices,
23(5), May 1988.

[LS99] Ora Lassila and Ralph R. Swick, editors: Resource Description
Framework (RDF) Model and Syntax Specification. W3C
Recommendation, February 1999. http://www.w3.org/TR/REC-rdf-syntax

[MA+02] Aimilia Magkanaraki, Sofia Alexaki, Vassilis Christophides and
Dimitris Plexousakis: Benchmarking RDF Schemas for the Semantic Web.
Proceedings of the First International Semantic Web Conference,
Sardinia, Italy, June 2002.

[MA+02] Shane McCarron, Jonny Axelsson, Beth Epperson, Ann Navarro and
Steven Pemberton, editors: XHTML 2.0. W3C Working Draft, August
2002. http://www.w3.org/TR/xhtml2/

[Mas02] Larry Masinter: "duri" and "tdb" URN namespaces based on dated URIs.
Internet Draft, work in progress, April 2002.
http://larry.masinter.net/duri.html

http://www-nrc.nokia.com/sw/rdf-datatyping.html
http://www-nrc.nokia.com/sw/rdf-datatyping.html

 149

[MD00] Sergey Melnik and Stefan Decker: A Layered Approach to Information
Modeling and Interoperability on the Web. Proceedings of the ECDL'00
Workshop on the Semantic Web, Lisbon, Portugal, September 2000.

[Mel99] Sergey Melnik: Bridging the Gap between RDF and XML. December
1999. http://www-db.stanford.edu/~melnik/rdf/fusion.html

[Men83] Valerie Mendes, project editor: A History of Art. Macmillan London,
1983, p. 850.

[Mil01] George A. Miller, principal investigator: WordNet 1.7.1. Princeton
University, 2001. http://www.cogsci.princeton.edu/~wn/

[Moo01] Graham Moore: RDF and TopicMaps: An Exercise in Convergence.
Proceedings of XML Europe 2001, Berlin, May 2001.

[Moo02] Graham Moore: An Integration of TopicMaps and RDF Using N3, Dublin
Core and RDFS. Final Draft, unpublished & undated, assumed to have
been written in 2002.
http://www.semanticwebserver.com/papers/integration2.doc

[Nag56] Ernest Nagel: Symbolic Notation, Haddocks’ Eyes and the Dog-Walking
Ordinance. The World of Mathematics volume three, edited by James
R. Newman, Simon and Schuster, New York, 1956, pp. 1878-1900.

[NB01] Steven R. Newcomb and Michael Biezunski: Topicmaps.net’s Processing
Model for XTM 1.0, version 1.02. July 2001.
http://www.topicmaps.net/pmtm4.htm

[NB02] Steven R. Newcomb and Michael Biezunski, editors: A Draft Reference
Model for ISO 13520 Topic Maps. ISO JTC1/SC34 N298 Rev. 1, April
2002. http://www.y12.doe.gov/sgml/sc34/document/0298R1.htm

[New02] Steven R. Newcomb: Preemptive Reification. Proceedings of
International Semantic Web Conference, Sardinia, Italy, June 2002.

[NWC00] Wolfgang Nejdl, Martin Wolpers and Christian Capelle: The RDF
Schema Specification Revisited. Proceedings of Modellierung 2000, St.
Goar, Germany, April 2000.

[Ogi01] Nikita Ogievitsky: XML Topic Maps through RDF Glasses. Presented at
Extreme Markup Languages 2001, Montréal, Québec, August 2001.
http://www.cogx.com/xtm2rdf/extreme2001/

[OMG01] Object Management Group: OMG Unified Modeling Language
Specification. Version 1.4, September 2001.
http://www.omg.org/technology/documents/formal/uml.htm.

[OMG02] Object Management Group: Meta Object Facility (MOF) Specification.
Version 1.4, April 2002.
http://www.omg.org/technology/documents/formal/mof.htm

 150

[Pep00] Stever Pepper: Topic maps and RDF: A first cut. Ontopia AS, June 2000.
http://www.ontopia.net/topicmaps/materials/rdf.html

[Pep01] Steve Pepper: Draft requirements, examples, and a "low bar" proposal for
Topic Map Constraint Language. ISO JTC1/SC34 N226, May 2001.
http://www.y12.doe.gov/sgml/sc34/document/0226.htm

[PG01] Stever Pepper and Geir Ove Grønmo: Towards a General Theory of
Scope. Proceedings of Extreme Markup Languages 2001, Montréal,
Canada, August 2001. http://www.ontopia.net/topicmaps/materials/scope.htm

[PGW95] Yannis Pakakonstantinou, Hector Garcia-Molina, Jennifer Widom:
Object Exchange Across Heterogeneous Information Sources. Proceedings
of the International Conference on Data Engineering, Taipei, Taiwan,
1995.

[PH01a] Jeff Z. Pan and Ian Horrocks: Metamodeling architecture of web ontology
languages. Proceedings of the Semantic Web Working Symposium,
Stanford, July 2001, pp. 131-149.

[PH01b] Alexandra Poulovassilis and Stefan G. Hild: Hyperlog: A Graph-Based
System for Database Browsing, Querying, and Update. IEEE Transactions
on Knowledge and Data Engineering, Vol. 13, No. 2, March/April
2001, pp. 316-332.

[PK01] John Punin and Mukkai Krishnamoorthy, editors: XGMML 1.0 Draft
Specification. June 2001. http://www.cs.rpi.edu/~puninj/XGMML/draft-
xgmml.html

[PM01] Steve Pepper and Graham Moore, editors: XML Topic Maps (XTM) 1.0.
TopicMaps.org specification, August 2001.
http://www.topicmaps.org/xtm/1.0/

[PS02a] Peter Patel-Schneider and Jérôme Siméon: The Yin/Yang Web: XML
Syntax and RDF Semantics. Proceedings of the 11th International World
Wide Web Conference, May 2002.
http://www2002.org/CDROM/refereed/231/

[PS02b] Peter Patel-Schneider and Jérôme Siméon: Building the Semantic Web
on XML. Proceedings of the First International Semantic Web
Conference, Sardinia, Italy, June 2002.

[RHJ99] Dave Raggett, Arnaud Le Hors and Ian Jacobs, editors: HTML 4.01
Specification. W3C Recommendation, December 1999.
http://www.w3.org/TR/html4/

[RM02] Martin Robillard and Gail Murphy: Concern Graphs: Finding and
Describing Concerns Using Structural Program Dependencies.
Proceedings of International Conference on Software Engineering
(ICSE) 2002, Orlando, Florida, May 2002.
http://www.cs.ubc.ca/labs/spl/papers/2002/icse02-feat.pdf

http://www.w3.org/TR/html4/

 151

[Rob01] Jonathan Robie: The Syntactic Web: Syntax and Semantics on the Web.
Proceedings of XML Conference & Exposition 2001, Orlando, Florida,
December 2001. http://www.idealliance.org/papers/xml2001/papers/html/03-01-
04.html

[Sch02] Guus Schreiber: A UML Presentation Syntax for OWL Lite. Internal
Webont draft, April 2002. http://www.swi.psy.uva.nl/usr/Schreiber/docs/owl-
uml/owl-uml.html

[SD99] John F. Sowa and David Dietz: Knowledge Representation: Logical,
Philosophical, and Computational Foundations. Brooks/Cole, 1999.

[ST99] Ralph R. Swick and Henry S. Thompson, editors: The Cambridge
Communiqué. W3C Note, October 1999. http://www.w3.org/TR/1999/NOTE-
schema-arch-19991007

[Sti01] Patrick Stickler: X-Values: Typed Data Literals for the Semantic Web and
Beyond. Nokia Research Center, Software Technology Laboratory,
Agent Technology Group, October 2001. http://www-
nrc.nokia.com/sw/X_Values_URI.pdf

[Sto98] Margaret-Anne D. Storey: A Cognitive Framework for Describing and
Evaluating Software Exploration Tools. PhD Thesis, School of Computing
Science, Simon Fraser University, December 1998.

[TB+01] Henry S. Thompson, David Beech, Murray Maloney and Noah
Mendelsohn, editors: XML Schema Part 1: Structures. W3C
Recommendation, May 2001. http://www.w3.org/TR/xmlschema-1/

[TO+99] Peri Tarr, Harold Ossher, William Harrison and Stanley M. Sutton, Jr.:
N Degrees of Separation: Multi-Dimensional Separation of Concerns.
Proceedings of International Conference on Software Engineering
(ICSE) 2002, Los Angeles, California, May 1999.
http://www.research.ibm.com/hyperspace/Papers/icse99.ps

[Tur96] Jane Turner, editor: The Dictionary of Art. Macmillan Publishers, 1996,
Volume 4, p. 673.

[US87] David Ungar and Randall B. Smith: Self: The power of simplicity.
OOPSLA '87 Conference Proceedings, Orlando, FL, October, 1987, pp.
227-241.

[Vli00] Eric van der Vlist: XML Linking Technologies. O’Reilly XML.com,
October 2000. http://www.xml.com/pub/a/2000/10/04/linking/index.html

[Vli01] Eric van der Vlist: Naïve approach to representing XTM 1.0 as RDF. RDF
Interest Mailing List, March 8, 2001.
http://lists.w3.org/Archives/Public/www-rdf-interest/2001Mar/0054.html

[Wei02] Eric Weisstein: World of Mathematics. Wolfram Research, 2002.
http://mathworld.wolfram.com/

 152

[Wil00] Simon Williams: The associative model of data. Lazy Software Ltd.,
Great Britain, 2000.

[Win01] Andreas Winter: Exchanging Graphs with GXL. Proceedings of Ninth
International Symposium on Graph Drawing, Vienna, September 2001.
http://www.gupro.de/winter/Papers/winter2001a.pdf

[WK+99] S. Weibel, J. Kunze, C. Lagoze and M. Wolf, editors: Dublin Core
Metadata Element Set, Version 1.1: Reference Description. Dublin Core
Metadata Initiative, July 1999. http://dublincore.org/documents/dces/

[Won98] Kenny Wong: Rigi User’s Manual, Version 5.4.4. University of Victoria,
June 1998. http://ftp.rigi.csc.uvic.ca/pub/rigi/doc/rigi-5.4.4-manual.pdf

[Wor01] Robert Worden: A Meaning Definition Language. Draft 2.02, Charteris,
May 2001. http://www.charteris.com/mdl/MDLWhitePaper.pdf

http://dublincore.org/documents/dces/

 153

A. Braque Metamodel Reference

Notation Explanation

An anonymous nest with unique identity.

A A is a nest that contains the atom B. The alternative notations are
equivalent. Nests can contain atoms or nests. Atoms cannot
contain anything.

A

A is a nest that contains B and C, in that order. The order of the
members is imposed by the increasing number of tic marks.

or:

References to nest A and atom C from nest B. These do not
introduce new unique ideas but rather reference an idea from
another diagram. The scopes can be nested to any level.

Various literal ideas, that uniquely reify the corresponding real-
world value. Pictured are strings, numbers and URIs, but more
can be added. The type of each literal is implied by the syntax.
The type is a nest contained in Domains.

::A

A
A nest labeled A. The label is used only for referencing the nest
in text and is not part of the model.

A One anonymous and one labeled atom.

B

: A

B

A

B

or:

B

C

B::C

"String" 42

<http://www.uvic.ca>

Figure A-1. Braque metamodel graphical notation primitives

 154

Notation Explanation Expansion

A B A expands B. A BNaive::Expand

R

An anonymous binary
relator from A to B, that
is also a member of the
nest R (usually a binary
relation).

::R

An atom called "A". The
idea's name is also used
as a label when referring
to it. The same notation
applies to nests.

Naive::Denotes

Naive:Represents

An anonymous,
unclassified binary
relator from A to B.

BA
A

B

BA
A

B

A

A

"A"

A B A extends B. Both A and
B must be Classifiers. A BNaive::Extend

R

B

A

P

Q

An anonymous binary
relationship between A
and B, that is also a
member of the nest R
(usually a relation). P
and Q, if present, give
the roles played by the
membership reification
pairs of A and B,
respectively.

Q P

::R

A B

BA R

A contains B, and the
reified membership pair
is a member of R
(usually a role).

B

A Domains::Member

::R

Figure A-2. Braque metamodel graphical notation shorthands

 155

A B

Members of A are nests
that may contain
members of B. Other
kinds of members may
also be allowed.

Sample element of A:

A

B

A

B

R

The binary relation R
relates elements of A to
elements of B. Other
elements may also be
allowed. The members
of instances of R at
index 1 play role P, and
those at index 2 play
role Q. If P or Q is
missing, ignore the part
of the expansion that
uses it.

A B

Notation Explanation Expansion

P

Q

Naive::Play Role by Index

::R

::P ::Q1 2

Naive::Member

Sample element of R:

Figure A-3. Braque metamodel graphical notation relation hints

 156

Naive

Domains

URIs

Strings

Classifiers

: Naive::Roles

Member

: Classifiers

Ideas

: Classifiers

Nests

Booleans

true false
Numbers

Time

Expand Extend

Subset Superset Subclass Superclass

Member

Contained

Container

Indicate

Indicator

Indicated

Figure A-4. Domains and basics of the naïve upper ontology

 157

: Classifiers

Binary Relations

: Classifiers

Symmetric Relations

: Classifiers

Functions

: Classifiers

::Naive

::Classifiers

Extend

: Classifiers

Relations

RepresentDenote

Identify

Expand

Indicate

: Classifiers

Transitive Relations

: Classifiers

Reflexive Relations

Domain

Invert

Invert

Enact Enact default

: Classifiers

Ternary Relations

::Represent::Denote

::Identify::Indicate

::Enact ::Enact default

::Invert

::Domain ::Extend

::Expand

These relations must be explicitly placed in the Naive module.

Figure A-5. Naïve upper ontology relations

 158

::Naive

::Classifiers

Enact

Enact default

1

0..1

::Relations ::Binary
Relations

: Classifiers

Roles

Play Role by Index

1

Relation

2

Index

3

Role

Enact default

Enact default

Container

Contained

Subset

Superset

Subclass

Superclass

::Ternary
Relations

::Relation ::Index ::Role

::Container

::Contained

::Subset

::Superset

::Subclass

::Superclass

These roles must be explicitly placed in the Naive module.

Indicator Indicated

::Indicator

::Indicated

Figure A-6. Naïve upper ontology roles

 159

B. Integration Metamodels Reference

Top
Namespaces

Qualified
Names

Domains::
Strings

Element
Types

Attribute
Types

{abstract}
Namespaces

XML

Naive::
Binary Relations

Elements

: Naive::Functions

Attributes

Finite
tree
structure

Naive::Denote
Naive::Identify

Local part

Naive::Denote
Naive::Identify

Naive::Denote
Naive::Identify

1

Naive::Identify

1

Element
Type Names

Attribute
Type Names

Simple
Names

Local
Attribute

Namespaces

{abstract}
Names

complete

complete

Naive::Denote

Naive::
Classifiers

Domains::
Strings

1

1

Naive::
Domains

1

: Naive::Functions

Local part

1

Domains::
URIs

1 See uniqueness
constraint in
Section 4.1.2.

Documents

See constraints
in Section 4.1.1.

Figure B-1. XML mapping ontology

 160

: Naive::Classifier
: RDF

Assertion

: RDFS

Resource

: RDFS

Literal

: RDFS

Container

: RDFS

Statement

: RDF

Bag

: RDF

Seq

: RDF

Alt

Naive::
Ideas

Naive::
Classifiers

RDF RDFS

Naive::
Nests

Naive::
Binary Relations

RDFS::subClassOf















 ⇒∈

∀)Resource,(subClassOf
Class

x
xx

Domains::
Strings

: RDFS

Class

: RDF

Property

: RDFS

ContainerMembershipProperty

All nests defined below are
of RDF::type RDFS::Class.

* RDFS::ClassRDF::type

RDFS::subClassOf

RDFS::subClassOf

See section 4.2.5
for constraints.

()
()





⇒

∈∀
)Statement,Expand(

Property:
t

tt

Figure B-2. RDF and RDFS classes

 161

: RDFS

member

Domains::Member

: RDFS

subClassOf

Naive::Extend

: RDFS

subPropertyOf

: RDF

type

: RDF

_1

: RDF

_2

...

Naive::Invert

: RDF

value

Naive::Represent

Naive::Invert

RDF::Property

RDF::type

: RDF

_3

RDFS::subPropertyOf

RDFS::
Container

Membership
Property

RDF::type

RDF::type

: RDF

subject

: RDF

predicate

: RDF

object

Naive::Indicate

: RDFS

comment

: RDFS

label

: RDFS

seeAlso

See section 4.2.6
for constraint.

RDF::type

See section 4.2.5
for constraints.

See section 4.2.3
for constraints.

Figure B-3. RDF and RDFS properties

 162

Topic Maps

: Naive::Binary Relations

Occurrences

: Naive::Roles

type

: Naive::Roles

instance

: Naive::Roles

subclass

: Naive::Roles

superclass

: Naive::Transitive Relations

superclass-subclass

: Naive::Binary Relations

type-instance

Naive::Extend

Naive::
Superclass

Naive::
Subclass

Domains::Member

Naive::
Container

Naive::
Contained

: Naive::Classifiers

Scopes

Naive::IdeasConstrain

: Naive::Binary Relations

Constrain

Naive::Relations

Unconstrained
Scope

Theme

: Naive::Roles

Theme

Scope

: Naive::Roles

Scope
Enact default

sort
name
theme

display
name
theme

: Naive::Roles

Subject

: Naive::Roles

Occurrence

Occurrences

Subject

Occurrence

Figure B-4. Topic Maps mapping ontology

 163

C. Research Notes

C.1. Braque Background
The Braque metamodel is named after Georges Braque (1882-1963), a French art-

ist. Georges was a contemporary of the more famous Pablo Picasso. Around

1910, they collaborated to found the Cubist movement. Most art historians give

them equal credit for this innovation, but Georges eschewed the limelight and so

only Picasso’s name is remembered by laypeople [Tur96].

In Cubism, Pablo and Georges rejected the artifice of naturalistic illusionism by

simultaneously depicting an object from multiple viewpoints and at multiple

times. “The Cubists intended painting to take account of the shifting, sometimes

irrational and random, nature of human experience of things and places and of

time and space.” [Men83] Cubist paintings are easy to recognize (see Figure C-1

for an example), though their disconnected nature does not endear them to the

casual viewer.

 164

I was unable to obtain an acceptable

copyright license for this picture for

purposes of web publication. Please

obtain a printed copy of this thesis

from the University of Victoria

library, or try searching the web for

Braque’s Still Life with Violin and

Pitcher.

Figure C-1. G. Braque’s “Still Life with Violin and Pitcher” (1909-10)
© Estate of Georges Braque / SODRAC (Montréal) 2002

How is the Braque metamodel related to cubism? The project’s original purpose

was to extend reverse engineering and code visualization systems to support

new programming languages that employ multidimensional separation of con-

cerns (MDSOC) [TO+99][RM02]. MDSOC advocates decomposing a system

along multiple dimensions simultaneously, isolating orthogonal concerns to pre-

vent tangling and scattering and thus enhance maintainability. The pieces are

later reintegrated into a coherent system that combines the various points of

view. The correspondence to Cubism is obvious, at least at this level of abstrac-

tion. However, to name the project directly after Cubism would have been too

blunt, and Picasso’s name is too well known. Braque, with his short, obscure

name, was a better choice.

The project has since drifted from its roots. I found the current tools’ metamod-

els to be inadequate for the multidimensional models I needed to built, and set

 165

out to create a more powerful metamodel. The application to the emerging se-

mantic web was opportunistic, but a good fit in retrospect. The project’s name

has remained throughout these perambulations, but, coming full circle, the

“shifting, sometimes irrational and random, nature of human experience” might

now be an apt description of the loosely woven semantic web that Braque tries to

integrate.

C.2. Subclass or Instance?
When should a concept be a subclass and when should it be an instance? This

question is often confusing to object-orientation neophytes and much time is

spent explaining the difference in computer science classes. It does not help that

the English language use the verb “to be” to indicate both classification (in-

stances) and generalization (superclasses) (see [Fow00] p. 96). Usually, the dif-

ference is explained by contrasting “is an example of” and “is a kind of”, and the

instructor moves on to the next unit.

The issue becomes trickier when the instance is a class itself since both choices

can appear valid. Sometimes the different characteristics of the relationships al-

low one possibility to be eliminated: generalization is transitive while classifica-

tion is not; generalization can follow classification, but not the other way around.

If applying transitivity leads to a nonsensical statement, or a desirable statement

cannot be derived, the choice may become obvious. Furthermore, in stratified

metamodels, the class’ stratum is often predetermined and forces the developer’s

hand.

The issue becomes most interesting in unstratified metamodels. In these models,

there is little to distinguish an instance from a subclass; often both choices are

meaningful and will work in practice. For example, it is clear that BinaryRelation

is a subclass of Relation, but should Denote be an instance or a subclass of Bi-

naryRelation? Both arguments are expounded below.

 166

From one point of view, Denote is an instance of BinaryRelation because it’s clearly

an example of a relation, not a whole class of them. It is only one set of pairs, not

a collection of sets. Also, BinaryRelation is a useful class with actual relations as

members since it can be used as the domain (or range) constraint for functions

that operate on (or return) binary relations.

From the other point of view, Denote is just a subclass of BinaryRelation. In this

approach, BinaryRelation is defined as the generic class of all pairs that describe

binary relationships, and specific relations are merely refinements (subsets) of it.

Having a domain or range of binary relations is only slightly trickier: all one

needs to do is collect all subclasses of BinaryRelation into a new class, a simple

query operation. It is also easy to restrict all binary relations to only contain

pairs. A normal membership constraint can be applied to BinaryRelation to indi-

cate that all members should be ordered nests of size 2. This is more difficult to

do in the classification approach above, since the constraint needs to “reach

down” across two layers of instantiation (from BinaryRelation to its relation

members, and then to their pair members). A constraint this “deep” is not going

to be easy (or even possible) to express using the constraint mechanisms usually

available.

In short, both techniques have advantages and disadvantages. The classification

technique was chosen somewhat arbitrarily for Braque’s naïve upper ontology,

mainly because classification appealed more to the author’s intuition. However,

the dilemma shows that both alternatives are viable, and raises the possibility

that one of them is superfluous.

This raises an interesting question: is it ever necessary to create new metaclasses

in an unstratified metamodel, or is single-layer subclassing sufficient for all

models?

 167

C.3. Indicators and Representation
The concepts of denotation and representation are very slippery, as evidenced by

the large quantity of nuanced definitions provided in the dictionary (15 sense for

“to represent” alone [Mil01]), the many pages devoted to the subject in philoso-

phical papers , and the sometimes-heated disagreement when the notions surface

in discussion groups. This makes it difficult to design a clean upper ontology

that includes these ideas—as it must—and can integrate their various interpreta-

tions into a single framework. The approach taken in Section 3.3.7 is to loosely

define some very general relations that can easily be mapped to while still pro-

viding the discrimination required by the end user.

It is interesting to consider how HTTP retrieval fits into this framework. The

HTTP protocol states that a GET method retrieves a representation of the re-

source identified by the URI passed to the server, or in other words that “an en-

tity corresponding to the requested resource is sent in the response” [FIG+99].

While everyone agrees that the entity returned is not the actual resource, opin-

ions differ widely on what is allowed as a “representation”. Some contend that

only a high fidelity digital copy of the resource should be returned, severely lim-

iting the kinds of resources that can be identified by retrievable URIs. Others say

that anything related to the resource can be returned, including descriptions,

metadata, etc.

This is a situation where the web’s loose “do anything that makes sense to hu-

mans” principle conflicts with the semantic web’s requirement for precise se-

mantics. Entertaining though it might be to see how this issue eventually gets

resolved, a semantic web metamodel would be grossly incomplete if it did not

provide some way to integrate information about the existing web into its onto-

logical framework. Luckily, the NUO is up to the task thanks to its relaxed class

definitions; these could of course be refined when the community settles on an

answer.

 168

For now, Figure C-2 shows how the response to a GET query on http://www.uvic.ca/

could be represented in the Braque metamodel. The Home page document re-

trieved is an abstract concept that represents UVic the resource identified by the

URI, without being directly related to the URI itself. The document itself is rep-

resented by its HTML source and may embed other abstract elements. One such

is the Image, which is probably a representation of its own abstract resource with

a different URI, though this is not shown in this diagram. We also take advan-

tage of being able to refer to links and tag the Home page Represent UVic relation-

ship with its retrieval timestamp.

UVic

<http://www.uvic.ca/> "http://www.uvic.ca/"Represent,
Identify

Denote,
Identify

Home
page "<html> … </html>"Represent

: MIME types

text/html

Image

: MIME types

image/jpeg

Embed

"GIF89a 1!HxjS@..."Represent

: Represent

Retrieved-at

2002/07/12
16:58:47

Figure C-2. Example representation of HTTP GET result

This is by no means a full mapping of all the information available when per-

forming an HTTP retrieval. We could also model the request and reply them-

selves, and should consider mapping other header fields, e.g. “Content-

Location”, which indicates the actual URI of the resource for which the represen-

tation was retrieved. Completing the mapping would require an in-depth un-

http://www.uvic.ca/

 169

derstanding of the intricacies of HTTP and is a job for another day. However,

this simple example shows that the Represent relation can be used appropriately

when modeling web page retrieval.

Other interesting questions remain as well:

• Is Represent a reflexive relation?

• Are any of the Indicate relations transitive?

C.4. Punning on Classes
A class is a category of individuals that all share some common characteristics.

The extent of a class is usually considered to be the set of its instances. However,

it is sometimes tempting to reuse a class in other contexts, in effect subverting its

identity for a related but incompatible purpose. This practice has somehow

gained the name of “punning”, and it poses some difficult problems for meta-

model integration. This section presents two examples of punning, then evalu-

ates the practice and suggests strategies for dealing with it.

The first example of punning comes from RDF, specifically the current proposal

for RDF datatypes [HMS02]. A datatype is defined to be both a class, whose ex-

tent is the set of values of that type, and a property (binary relation), whose ex-

tent is the mapping between values and literal representations thereof. This is

permissible in RDF since the model theory [Hay02a] uses different functions to

define the extent of classes and properties so the sets are kept separate. The ad-

vantage is that a given datatype name can be used both to indicate the type of a

resource and to map a resource to its literal (Figure C-3).

_:age <rdf:value> _:ten .
_:ten <rdf:type> <xsd:decimal> .
_:ten <xsd:decimal> “10” .

Figure C-3. Datatype punning in RDF

Topic mappers are also incorrigible punsters: they often use the same subject as

both a class and a role type. The justification proffered is that the concept of, say,

 170

“student” outside the context of any given association is the same as that of the

role of “student” in the association between a person and a university (Figure

C-4). The punning does not affect the Topic Maps model (such as it is) since it

does not explicitly deal with class or role type extent, but trips up formal models

such as Braque or [AO+02].

[Piotr : student = “Piotr Kaminski”]
[UVic : university
 = “University of Victoria”
 @“http://www.uvic.ca”]
attends (Piotr : student, UVic : university)

Figure C-4. Class and role punning in Topic Maps

In both cases, it seems intuitively wrong to use the same concept for two differ-

ent purposes. While a class is sometimes considered to be a unary predicate, it is

never interpreted as a binary one. In any case, most people would agree that

unary and binary predicates (regardless of interpretation) are best kept separated.

Furthermore, mixing up differing extents, even if acceptable for a model theory,

is confusing when one wants to start making statements about the extents.46

Punning also poses a particular problem in the Braque metamodel, since the ex-

tent of a class or relation is represented directly as its member elements. If a sin-

gle concept is both a class and a relation, it will contain a mix of class instances

and relation tuples, to the likely confusion of the user (not to mention the failure

of some validity constraints). This is unacceptable, so barring a sudden ban on

puns, what is a nice metamodel to do?

For punning to work at all, it must be obvious from context which meaning is

intended. We could take advantage of this to split the single concept into two (or

more) independent ones, each with a single interpretation and extent. This ap-

proach produces the cleanest mapping, but it will fail if ever the correct meaning

is not obvious since the system would not know which concept to use. For ex-

46 See Bob MacGregor’s testimony in his message to the RDF-Interest mailing list.
http://lists.w3.org/Archives/Public/www-rdf-interest/2002Jul/0129.html

 171

ample, in RDF, if a datatype is used as the subject of a statement, it is not clear

whether the statement is about the class portion, the relation portion, or both. It

works reasonably well for roles versus classes, though, and was adopted for the

Topic Maps mapping.

Another approach would be to translate all but one of the extents into a relation

other than membership. This lets us retain one central concept, but clearly dis-

tinguish between its different uses. For example, in a topic map, a role type sub-

ject would be linked to a role with an extra relationship rather than directly con-

taining the reified membership pair. The problem there is that we’d be eschew-

ing standard modeling techniques—thus confusing the user—and introducing

extra levels of indirection into the model. The result might even become a partial

object-to-semantic lift, whose elimination is a major goal of the Braque project.

A more promising avenue may be a re-examination of the semantics of classes

and role playing. If we redefine class membership as “the instance plays the

class role in a global context”, then assigning the class as a role in an association

could be interpreted as “the member plays the class role in the context of the as-

sociation”. This would require a change from the “flat” class extension to some

more complicated scheme, and a complete rewrite of the NUO.

Finally, perhaps we should simply admit that the extent of a concept is context-

dependent. The members of a nest would then be scoped, either globally, by

functionality (e.g., RDF predicate), or by association, as would the type of the

nest and hence the validation rules that apply to it. This approach may be the

best yet, but would greatly complicate the simple membership semantics of

Braque. It should be investigated with great care.

VITA

Surname: Kaminski Given Names: Piotr

Place of birth: Gdańsk, Poland

Educational Institutions Attended:

University of Victoria 1998-2002
University of Waterloo 1992-1997

Degrees Awarded:

B. Math. (Honours Co-op) University of Waterloo 1997

Honours and Awards:

Canada Scholarship 1992-1997
Descartes Scholarship 1992-1997

Publications:

Applying Multi-dimensional Separation of Concerns to Software Visualization. Ad-
vanced Separation of Concerns Workshop, International Conference on Software
Engineering, Toronto, Canada, 2001.

Using Hypersets to Represent Semistructured Data. Information Systems Modeling,
Roznov pod Radhostem, Czech Republic, 2002.

UNIVERSITY OF VICTORIA PARTIAL COPYRIGHT LICENSE

I hereby grant the right to lend my thesis (or dissertation) to users of the

University of Victoria Library, and to make single copies only for such users or in

response to a request from the Library of any other university, or similar

institution, on its behalf or for one of its users. I further agree that permission for

extensive copying of this thesis for scholarly purposes may be granted by me or a

member of the University designated by me. It is understood that copying or

publication of this thesis for financial gain by the University of Victoria shall not

be allowed without my written permission.

Title of Thesis/Dissertation:

Integrating Information on the Semantic Web
Using Partially Ordered Multi Hypersets

Author ____________________

Piotr Kaminski

September 26, 2002

	Table of Contents
	List of Tables
	List of Equations
	List of Figures
	Introduction
	The Status Quo
	The Semantic Web
	The Case for Integration
	Looking Forward

	Background
	Terminology
	Data, Information, Knowledge and Wisdom
	Reification
	Uniform Resource Identifiers
	Ontologies

	Classifying Information
	Classification of Semistructured Data
	Metamodel Stratification

	Metamodel Semantic Layers
	IMI Reference Model
	Object Layer Features

	Mapping between Metamodels
	Syntax-to-Syntax Mapping
	Object-to-Object Mapping
	Object-to-Semantic Lift
	Semantic-to-Semantic Mapping
	Mapping Summary

	The Braque Metamodel
	Goals and Principles
	Primitives
	Atoms
	Hypersets
	Identity
	Ordering and Duplicates
	Nest Size
	Notational Sugar

	Naïve Upper Ontology
	Types
	Relations
	Membership Reification
	Roles
	Subtypes
	Names
	Identifiers

	Inferences and Validation
	Relation Hints
	Relation Constraints
	Metatype Compatibility Problem
	Metatype Constraint
	Constraining Naïve Metatypes

	Issues of Logic

	Integration
	Extensible Markup Language
	Basic Structure of XML Documents
	XML Names
	XML Namespaces

	Resource Description Framework
	Basic Structure of RDF
	RDF Types, Properties and Values
	RDFS Classes, Hierarchies and Indicators
	Containers
	Containers Embedding
	Statements, Statings and Reification

	Topic Maps
	Basic Structure of Topic Maps
	Subject Identification
	Class Ontology
	Scopes
	Names in Topic Maps
	Occurrences

	Integration Example
	Course List in RDF
	Job Offerings in XML
	Coverage Opinions as Topic Maps
	Integrated Model in Braque

	Related Work
	The Integrated Metamodels
	Extensible Markup Language
	Resource Description Framework
	Topic Maps

	Merging RDF and XML
	Bridging the Gap
	OrdLab Graphs
	The Yin/Yang Web

	Merging RDF and Topic Maps
	The Early Lifts
	Two Semantic Mappings
	Occurrences as Statements
	The Syntactic Web

	Other Metamodels
	Directed Binary Graphs
	Advanced Graphs
	Odds and Ends

	Conclusions
	Evaluation and Contributions
	Deep Reflection
	Expressive Power
	Elegance
	Integration

	Future Work
	Theory
	Integration
	Implementation
	Follow-On Work

	References
	Braque Metamodel Reference
	Integration Metamodels Reference
	Research Notes
	Braque Background
	Subclass or Instance?
	Indicators and Representation
	Punning on Classes

