
A Better ModelA Better Model

Piotr Kaminski

<pkaminsk@who.net>

A Better Model 2

Semantic Nets

• An idea from the field of Artificial Intelligence
• represent information as a collection of concepts
• meaning arises from the relationships between the concepts
• applicable to many domains

• Usually represented using graphs:

foo bar

functions.hfoo.c bar.c

calls

defined
in

de
cla

re
d

in
declared

in

de
fi

ne
d

in

line: 42
line: 13

callsargs: [n : int]

A Better Model 3

• Talk concentrates on the abstract semantic net meta-model
• no specific information domain
• not conversion of data to a semantic net
• not much about visualizing the semantic net
• very little about a possible implementation

Roadmap

1. Problems and solutions
2. Types (with a diagrammed example)
3. Order and sequencing
4. Queries and inferences

A Better Model 4

Problems

• Why are attributes different from relationships?
• requires two different access mechanisms
• must know how each property is represented for queries
• attributes may have further internal structure that ought to be

captured in the graph

• Why are edge labels not a normal attribute?
• requires special constructs when writing queries
• can’t represent the concept of edge type within the graph

• trying to do so can lead to infinite regress

• Why are all relationships binary?
• imagine a relational database that only allows two-column tables
• could work around this by indirecting all edges through an

intermediate vertex

A Better Model 5

Foundations

• Use a hypergraph :
• each edge may connect any number of vertices
• same theoretical foundation as graphs

• Vertices are not attributed
• represent attributes by binary relationships between the

subject and the value
• requires special “atom” vertices to represent the actual values

• Edges are collections of vertices
• cardinality may be greater than 2
• each edge is also automatically a vertex (a collector or relator)
• allow edges to be members of themselves

• Call vertices entities and edges relationships

A Better Model 6

Types

• Avoid strict typing
• keep model flexible for experimentation and integration
• allow optional validators that indicate any problems

• Entities (including relationships) are collected into types
• a type is a relationship that collects all vertices that are

instances of the same concept
• an entity type might be “function” or “file”
• a relationship type might be “calls” or “line number” or “name”
• another type is “relationship type”

• note that this type is a member of itself

A Better Model 7

• Each entity and relationship is a vertex
• A relationship has unlabeled binary directed edges from itself to

its contents
foo barcalls

“foo” “bar”

“calls”

“name”

12 1 21 2

12

12

Graph

Hypergraph

Example Diagram

A Better Model 8

Don’t Panic!

• It looks complex, but…
• only the initial setup requires lots of extra vertices
• long term, the # of vertices is O(n) relative to a plain graph
• an implementation is not required to realize a vertex until it’s

needed by the user
• most vertices will be virtual for their entire lifespan

• How to present these hypergraphs to the user?
• abstract away from the physical structure
• similar to usual Rigi and SHriMP visuals
• n-ary edges represented by either tentacles or grouping
• potential issues with relationships that contain themselves

A Better Model 9

Ordering

• Order is a basic concept, viz:
• the order of a collection of function calls could be important
• the meaning assigned to each member of a “name” relationship

is different

• A relationship has some basic properties that affect its contents:

• Also, a list with a fixed size is a relator

pobag ?partialno

posetpartialyes
ordered settotalyes

listtotalno

bagnoneno

setnoneyes
Common nameOrderDistinct elements?

A Better Model 10

Sequencing

• Sequence is also a basic concept, distinct from order
• some infinite sets have order but no sequence (e.g. the

rationals)
• sequence does imply order, though

• Sequencing is more than a series of binary relationships
• allows access to entity at any given index
• changing the sequence of a linked list is tricky

• especially if only certain operations are allowed by a given
relationship (e.g. exchange elements, move elements)

• However, if a collection of elements is already sequenced using
binary relationships, we can take advantage of it

A Better Model 11

Queries

• A query selects a subset of an input relationship to produce a new
output relationship
• the result changes dynamically along with changes in the input
• the output relationship is read-only
• the output relationship can be used as input for another query

• How?
• make a new language? rule-based?
• how to describe the ordering/sequencing of the result?
• what’s a useful interpretation of transitive closure in a

hypergraph?

A Better Model 12

Inferences

• There are always implicit entities and relationships in a graph that
can be inferred from existing information, e.g.
• aggregation: combine relationships along some hierarchy to

allow for high-level overview of relationships
• factoring: split relators into a bunch of binary relationships,

and vice-versa
• reification: make the containment relation explicit (as in the

raw diagrams), etc.
• any other derived semantics…

• Inferred entities should be indistinguishable from original ones
• can be visualized alongside the original entities
• can be related to other entities, whether inferred or original

• Inferences are similar to queries, but create new entities
(instead of just filtering and regrouping existing ones)

A Better Model 13

Virtualization

• We don’t necessarily want to represent all results of an inference
explicitly:
• the number of inferred entities could be big (even infinite)
• most of them might never be needed
• often, we just want to know if an existing entity participates in

some inferred relationship

• Hence:
• let user specify explicitly which inferences to apply where
• apply inference rules lazily
• cache inference results
• destroy inferred entities if unmodified and no longer needed

• All (de)virtualization is performed transparently!

A Better Model 14

Conclusion

• Advantages of this hypergraph meta-model:
• uniform: simplified access from user code and reuse of

visualization code at all meta-levels
• abstract: virtualization allows complex inferences and infinite

sets without destroying uniformity
• complete: can represent all levels of meta-concepts within the

graph itself
• flexible: can be used to integrate many other models
• rich: offers many opportunities for optimization

• What’s next?
• ironing out queries and inferences
• specifying dimensions
• implementing a proof of concept or two.

	A Better Model
	Semantic Nets
	Roadmap
	Problems
	Foundations
	Types
	Example Diagram
	Don’t Panic!
	Ordering
	Sequencing
	Queries
	Inferences
	Virtualization
	Conclusion

